Abstract
Background: Bioinformatics is an interdisciplinary field at the intersection of molecular biology and computing technology. To characterize the field as convergent domain, researchers have used bibliometrics, augmented with text-mining techniques for content analysis. In previous studies, Latent Dirichlet Allocation (LDA) was the most representative topic modeling technique for identifying topic structure of subject areas. However, as opposed to revealing the topic structure in relation to metadata such as authors, publication date, and journals, LDA only displays the simple topic structure. Methods: In this paper, we adopt the Tang et al.'s Author-Conference-Topic (ACT) model to study the field of bioinformatics from the perspective of keyphrases, authors, and journals. The ACT model is capable of incorporating the paper, author, and conference into the topic distribution simultaneously. To obtain more meaningful results, we use journals and keyphrases instead of conferences and bag-of-words. For analysis, we use PubMed to collected forty-six bioinformatics journals from the MEDLINE database. We conducted time series topic analysis over four periods from 1996 to 2015 to further examine the interdisciplinary nature of bioinformatics. Results: We analyze the ACT Model results in each period. Additionally, for further integrated analysis, we conduct a time series analysis among the top-ranked keyphrases, journals, and authors according to their frequency. We also examine the patterns in the top journals by simultaneously identifying the topical probability in each period, as well as the top authors and keyphrases. The results indicate that in recent years diversified topics have become more prevalent and convergent topics have become more clearly represented. Conclusion: The results of our analysis implies that overtime the field of bioinformatics becomes more interdisciplinary where there is a steady increase in peripheral fields such as conceptual, mathematical, and system biology. These results are confirmed by integrated analysis of topic distribution as well as top ranked keyphrases, authors, and journals.
Original language | English |
---|---|
Article number | 251 |
Journal | BMC bioinformatics |
Volume | 18 |
DOIs | |
Publication status | Published - 2017 May 31 |
Bibliographical note
Funding Information:This work was supported by the Bio-Synergy Research Project (NRF-2013M3A9C4078138) of the Ministry of Science, ICT and Future Planning through the National Research Foundation. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2014R1A2A2A01004454). The publication charges for this article was funded by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP).
Publisher Copyright:
© 2017 The Author(s).
All Science Journal Classification (ASJC) codes
- Structural Biology
- Biochemistry
- Molecular Biology
- Computer Science Applications
- Applied Mathematics