Ankle strategy assistance to improve gait stability using controllers based on in-shoe center of pressure in 2 degree-of-freedom powered ankle–foot orthoses: a clinical study

Ho Seon Choi, Yoon Su Baek, Hyunki In

Research output: Contribution to journalArticlepeer-review


Background: Although the ankle strategy is important for achieving frontal plane stability during one-leg stance, previously developed powered ankle–foot orthoses (PAFOs) did not involve ankle strategies because of hardware limitations. Weakness of movement in frontal plane is a factor that deteriorates gait stability and increases fall risk so it should not be overlooked in rehabilitation. Therefore, we used PAFO with subtalar joint for frontal plane movement and tried to confirm that the existence of it is important in balancing through clinical experiments. Methods: We developed a proportional CoP controller to assist ankle strategy or stabilizing moment and enhance eversion to compensate for the tilting moment with 2 dof PAFO. It was true experimental study, and we recruited seven healthy subjects (30 ± 4 years) who did not experience any gait abnormality participated in walking experiments for evaluating the immediate effect of subtalar joint of PAFO on their gait stability. They walked on the treadmill with several cases of controllers for data acquisitions. Indices of gait stability and electromyography for muscle activity were measured and Wilcoxon signed-rank tests were used to identify meaningful changes. Results: We found that subjects were most stable during walking (in terms of largest Lyapunov exponents, p < 0.008) with the assistance of the PAFO when their electromyographic activity was the most reduced (p < 0.008), although postural sway increased when a proportional CoP controller was used to assist the ankle strategy (p < 0.008). Other indices of gait stability, kinematic variability, showed no difference between the powered and unpowered conditions (p > 0.008). The results of the correlation analysis indicate that the actuator of the PAFO enhanced eversion and preserved the location of the CoP in the medial direction so that gait stability was not negatively affected or improved. Conclusions: We verified that the developed 2 dof PAFO assists the ankle strategy by compensating for the tilting moment with proportional CoP controller and that wearer can walk in a stable state when the orthosis provides power for reducing muscle activity. This result is meaningful because an ankle strategy should be considered in the development of PAFOs for enhancing or even rehabilitating proprioception.

Original languageEnglish
Article number114
JournalJournal of NeuroEngineering and Rehabilitation
Issue number1
Publication statusPublished - 2022 Dec

Bibliographical note

Funding Information:
This research was financially supported by the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade, Industry and Energy of Korean government under grant No. UM21422RD4.

Publisher Copyright:
© 2022, The Author(s).

All Science Journal Classification (ASJC) codes

  • Rehabilitation
  • Health Informatics


Dive into the research topics of 'Ankle strategy assistance to improve gait stability using controllers based on in-shoe center of pressure in 2 degree-of-freedom powered ankle–foot orthoses: a clinical study'. Together they form a unique fingerprint.

Cite this