### Abstract

This paper analyzes the ratio of the transmit antennas and receive antennas in multi-user multiple-input multipleoutput with a full-duplex and large array base station (BS) and half-duplex users (MU-MIMO FLB-HU) systems. We consider the BS exploits zero-forcing beamformer and zero-forcing receiver. We derive the deterministic approximation of the downlink and uplink sum-rates considering inter-user interference and self-interference, respectively. Based on the analyzed results, we formulate an optimization problem in terms of the number of transmit and receive antennas to maximize the sum of downlink and uplink sum-rates subject to the number of total antennas at the BS. From the optimization problem, the optimal antenna ratio between the number of transmit and receive antennas can be obtained. We analyze that the optimal antenna ratio converges to the ratio between the number of downlink users (K_{d}) and uplink users (K_{u}) as the number of total antennas goes to infinity. Simulation results show that the optimal antenna ratio enhances the sum-rate performance compared to the same number of transmit antennas and receive antennas in the MU-MIMO FLBHU system. In particular, in the MU-MIMO FLB-HU system with K_{d} = 10 and K_{u} = 5, the optimal antenna ratio can achieve about 5∼10bps/Hz performance gain compared to the same number of transmit antennas and receive antennas.

Original language | English |
---|---|

Title of host publication | 2015 IEEE International Conference on Communications, ICC 2015 |

Publisher | Institute of Electrical and Electronics Engineers Inc. |

Pages | 1589-1594 |

Number of pages | 6 |

ISBN (Electronic) | 9781467364324 |

DOIs | |

Publication status | Published - 2015 Sep 9 |

Event | IEEE International Conference on Communications, ICC 2015 - London, United Kingdom Duration: 2015 Jun 8 → 2015 Jun 12 |

### Publication series

Name | IEEE International Conference on Communications |
---|---|

Volume | 2015-September |

ISSN (Print) | 1550-3607 |

### Other

Other | IEEE International Conference on Communications, ICC 2015 |
---|---|

Country | United Kingdom |

City | London |

Period | 15/6/8 → 15/6/12 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Computer Networks and Communications
- Electrical and Electronic Engineering

### Cite this

*2015 IEEE International Conference on Communications, ICC 2015*(pp. 1589-1594). [7248551] (IEEE International Conference on Communications; Vol. 2015-September). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICC.2015.7248551

}

*2015 IEEE International Conference on Communications, ICC 2015.*, 7248551, IEEE International Conference on Communications, vol. 2015-September, Institute of Electrical and Electronics Engineers Inc., pp. 1589-1594, IEEE International Conference on Communications, ICC 2015, London, United Kingdom, 15/6/8. https://doi.org/10.1109/ICC.2015.7248551

**Antenna ratio for sum-rate maximization in MU-MIMO with full-duplex large array BS.** / Min, Kyungsik; Jang, Youngrok; Park, Sangjoon; Choi, Sooyong.

Research output: Chapter in Book/Report/Conference proceeding › Conference contribution

TY - GEN

T1 - Antenna ratio for sum-rate maximization in MU-MIMO with full-duplex large array BS

AU - Min, Kyungsik

AU - Jang, Youngrok

AU - Park, Sangjoon

AU - Choi, Sooyong

PY - 2015/9/9

Y1 - 2015/9/9

N2 - This paper analyzes the ratio of the transmit antennas and receive antennas in multi-user multiple-input multipleoutput with a full-duplex and large array base station (BS) and half-duplex users (MU-MIMO FLB-HU) systems. We consider the BS exploits zero-forcing beamformer and zero-forcing receiver. We derive the deterministic approximation of the downlink and uplink sum-rates considering inter-user interference and self-interference, respectively. Based on the analyzed results, we formulate an optimization problem in terms of the number of transmit and receive antennas to maximize the sum of downlink and uplink sum-rates subject to the number of total antennas at the BS. From the optimization problem, the optimal antenna ratio between the number of transmit and receive antennas can be obtained. We analyze that the optimal antenna ratio converges to the ratio between the number of downlink users (Kd) and uplink users (Ku) as the number of total antennas goes to infinity. Simulation results show that the optimal antenna ratio enhances the sum-rate performance compared to the same number of transmit antennas and receive antennas in the MU-MIMO FLBHU system. In particular, in the MU-MIMO FLB-HU system with Kd = 10 and Ku = 5, the optimal antenna ratio can achieve about 5∼10bps/Hz performance gain compared to the same number of transmit antennas and receive antennas.

AB - This paper analyzes the ratio of the transmit antennas and receive antennas in multi-user multiple-input multipleoutput with a full-duplex and large array base station (BS) and half-duplex users (MU-MIMO FLB-HU) systems. We consider the BS exploits zero-forcing beamformer and zero-forcing receiver. We derive the deterministic approximation of the downlink and uplink sum-rates considering inter-user interference and self-interference, respectively. Based on the analyzed results, we formulate an optimization problem in terms of the number of transmit and receive antennas to maximize the sum of downlink and uplink sum-rates subject to the number of total antennas at the BS. From the optimization problem, the optimal antenna ratio between the number of transmit and receive antennas can be obtained. We analyze that the optimal antenna ratio converges to the ratio between the number of downlink users (Kd) and uplink users (Ku) as the number of total antennas goes to infinity. Simulation results show that the optimal antenna ratio enhances the sum-rate performance compared to the same number of transmit antennas and receive antennas in the MU-MIMO FLBHU system. In particular, in the MU-MIMO FLB-HU system with Kd = 10 and Ku = 5, the optimal antenna ratio can achieve about 5∼10bps/Hz performance gain compared to the same number of transmit antennas and receive antennas.

UR - http://www.scopus.com/inward/record.url?scp=84953736810&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84953736810&partnerID=8YFLogxK

U2 - 10.1109/ICC.2015.7248551

DO - 10.1109/ICC.2015.7248551

M3 - Conference contribution

AN - SCOPUS:84953736810

T3 - IEEE International Conference on Communications

SP - 1589

EP - 1594

BT - 2015 IEEE International Conference on Communications, ICC 2015

PB - Institute of Electrical and Electronics Engineers Inc.

ER -