TY - JOUR
T1 - Anti-cancer Effects of HNHA and Lenvatinib by the Suppression of EMT-Mediated Drug Resistance in Cancer Stem Cells
AU - Lee, Yong Sang
AU - Kim, Seok Mo
AU - Kim, Bup Woo
AU - Chang, Ho Jin
AU - Kim, Soo Young
AU - Park, Cheong Soo
AU - Park, Ki Cheong
AU - Chang, Hang Seok
N1 - Publisher Copyright:
© 2018 The Authors
PY - 2018/2
Y1 - 2018/2
N2 - Anaplastic thyroid cancer (ATC) constitutes less than 2% of total thyroid cancers but accounts for 20–40% of thyroid cancer-related deaths. Cancer stem cell drug resistance represents a primary factor hindering treatment. This study aimed to develop targeted agents against thyroid malignancy, focusing on individual and synergistic effects of HNHA (histone deacetylase), lenvatinib (FGFR), and sorafenib (tyrosine kinase) inhibitors. Patients with biochemically and histologically proven papillary thyroid cancer (PTC) and ATC were included. Cell samples were obtained from patients at the Thyroid Cancer Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. PTC and ATC cells were treated with lenvatinib or sorafenib, alone or in combination with HNHA. Tumor-bearing mice (10/group) were administered 10 mg/kg lenvatinib (p.o.) or 40 mg/kg sorafenib (p.o.), alone or in combination with 25 mg/kg HNHA (i.p.) once every three days. Gene expression in patient-derived PTC and ATC cells was compared using a microarray approach. Cellular apoptosis and proliferation were examined by immunohistochemistry and MTT assays. Tumor volume and cell properties were examined in the mouse xenograft model. HNHA-lenvatinib combined treatment induced markers of cell cycle arrest and apoptosis and suppressed anti-apoptosis markers, epithelial-mesenchymal transition (EMT), and the FGFR signaling pathway. Combined treatment induced significant tumor shrinkage in the xenograft model. HNHA-lenvatinib combination treatment thus blocked the FGFR signaling pathway, which is important for EMT. Treatment with HNHA-lenvatinib combination was more effective than either agent alone or sorafenib-HNHA combination. These findings have implications for ATC treatment by preventing drug resistance in cancer stem cells.
AB - Anaplastic thyroid cancer (ATC) constitutes less than 2% of total thyroid cancers but accounts for 20–40% of thyroid cancer-related deaths. Cancer stem cell drug resistance represents a primary factor hindering treatment. This study aimed to develop targeted agents against thyroid malignancy, focusing on individual and synergistic effects of HNHA (histone deacetylase), lenvatinib (FGFR), and sorafenib (tyrosine kinase) inhibitors. Patients with biochemically and histologically proven papillary thyroid cancer (PTC) and ATC were included. Cell samples were obtained from patients at the Thyroid Cancer Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. PTC and ATC cells were treated with lenvatinib or sorafenib, alone or in combination with HNHA. Tumor-bearing mice (10/group) were administered 10 mg/kg lenvatinib (p.o.) or 40 mg/kg sorafenib (p.o.), alone or in combination with 25 mg/kg HNHA (i.p.) once every three days. Gene expression in patient-derived PTC and ATC cells was compared using a microarray approach. Cellular apoptosis and proliferation were examined by immunohistochemistry and MTT assays. Tumor volume and cell properties were examined in the mouse xenograft model. HNHA-lenvatinib combined treatment induced markers of cell cycle arrest and apoptosis and suppressed anti-apoptosis markers, epithelial-mesenchymal transition (EMT), and the FGFR signaling pathway. Combined treatment induced significant tumor shrinkage in the xenograft model. HNHA-lenvatinib combination treatment thus blocked the FGFR signaling pathway, which is important for EMT. Treatment with HNHA-lenvatinib combination was more effective than either agent alone or sorafenib-HNHA combination. These findings have implications for ATC treatment by preventing drug resistance in cancer stem cells.
UR - http://www.scopus.com/inward/record.url?scp=85044757273&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044757273&partnerID=8YFLogxK
U2 - 10.1016/j.neo.2017.12.003
DO - 10.1016/j.neo.2017.12.003
M3 - Article
C2 - 29331886
AN - SCOPUS:85044757273
VL - 20
SP - 197
EP - 206
JO - Neoplasia
JF - Neoplasia
SN - 1522-8002
IS - 2
ER -