Anti-obesity effects of heat-transformed green tea extract through the activation of adipose tissue thermogenesis

Hyeonyeong Im, Jaewon Lee, Kyungmin Kim, Yeonho Son, Yun Hee Lee

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Adipose tissue thermogenesis is a potential therapeutic target to increase energy expenditure and thereby combat obesity. The aim of the present study was to investigate the thermogenic and anti-obesity effects of heat-transformed green tea extract (HTGT) and enzymatically modified isoquercetin (EMIQ). Methods: Immortalized brown pre-adipocytes and C3H10T1/2 cells were used for in vitro analyses. A high-fat diet (HFD)-induced obesity mouse model and CIDEA-reporter mice were used for in vivo experiments. The effects of HTGT and EMIQ on mitochondrial metabolism were evaluated by immunoblot, mitochondrial staining, and oxygen consumption rate analyses. In vivo anti-obesity effects of HTGT and EMIQ were measured using indirect calorimetry, body composition analyses, glucose tolerance tests, and histochemical analyses. Results: Co-treatment with HTGT and EMIQ (50 μg/mL each) for 48 h increased brown adipocyte marker and mitochondrial protein levels (UCP1 and COXIV) in brown adipocytes by 2.9-fold, while the maximal and basal oxygen consumption rates increased by 1.57- and 1.39-fold, respectively. Consistently, HTGT and EMIQ treatment increased the fluorescence intensity of mitochondrial staining in C3H10T1/2 adipocytes by 1.68-fold. The combination of HTGT and EMIQ (100 mg/kg each) increased the expression levels of brown adipocyte markers and mitochondrial proteins in adipose tissue. Two weeks of HTGT and EMIQ treatment (100 mg/kg each) led to a loss of 3% body weight and 7.09% of body fat. Furthermore, the treatment increased energy expenditure by 8.95% and improved glucose tolerance in HFD-fed mice. Conclusions: The current study demonstrated that HTGT and EMIQ have in vivo anti-obesity effects partly by increasing mitochondrial metabolism in adipocytes. Our findings suggest that a combination of HTGT and EMIQ is a promising therapeutic agent for the treatment of obesity and related metabolic diseases.

Original languageEnglish
Article number14
JournalNutrition and Metabolism
Volume19
Issue number1
DOIs
Publication statusPublished - 2022 Dec

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) Grants ((NRF-2019R1C1C1002014, NRF-2018R1A5A2024425). This work was also supported by a joint research Grant from AMOREPACIFIC.

Publisher Copyright:
© 2022, The Author(s).

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)
  • Endocrinology, Diabetes and Metabolism
  • Nutrition and Dietetics

Fingerprint

Dive into the research topics of 'Anti-obesity effects of heat-transformed green tea extract through the activation of adipose tissue thermogenesis'. Together they form a unique fingerprint.

Cite this