Application of an EWMA combining technique to the prediction of currency exchange rates

Hyung Won Shin, So Young Sohn

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Financial forecasting is an important and challenging task for both academic researchers and business practitioners. The recent trend to improve the prediction accuracy is to combine individual forecasts using a simple average or weighted average where the weight reflects the inverse of the prediction error. In the existing combining methods, however, the errors between actual and predicted values are equally reflected in the weights regardless of the time order in a forecasting horizon. In this paper, we propose a new approach where the forecasting results of Generalized AutoRegressive Conditional Heteroskedastic (GARCH), neural network, and random walk models are combined based on a weight that reflects the inverse of the exponentially weighted moving average of the Mean Absolute Percentage Error (MAPE) of each individual prediction model. The results of an empirical study indicate that the proposed method has a better accuracy than the GARCH, neural network, and random walk models, and also combining methods based on using the MAPE for the weight.

Original languageEnglish
Pages (from-to)639-644
Number of pages6
JournalIIE Transactions (Institute of Industrial Engineers)
Volume39
Issue number6
DOIs
Publication statusPublished - 2007 Jun 1

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Application of an EWMA combining technique to the prediction of currency exchange rates'. Together they form a unique fingerprint.

  • Cite this