Architectural control of magnetic semiconductor nanocrystals

Young Wook Jun, Yoon Young Jung, Jinwoo Cheon

Research output: Contribution to journalArticlepeer-review

391 Citations (Scopus)

Abstract

Shape- and dopant-controlled magnetic semiconductor nanocrystals have been achieved by the thermolysis of nonpyrophoric and less reactive single molecular precursors under a monosurfactant system. Reaction parameters governing both the intrinsic crystalline phase and the growth regime (kinetic vs thermodynamic) are found to be important for the synthesis of various shapes of MnS nanocrystals that include cubes, spheres, 1 -dimensional (1 -D) monowires, and branched wires (bipods, tripods, and tetrapods). Obtained nanowires exhibit enhanced optical and magnetic properties compared to those of 0-D nanospheres. Proper choice of molecular precursors and kinetically driven low-temperature growth afford dopant controlled 1-D Cd1-x nanorods at high levels (up to ∼12%) of Mn, which is supported by repeated surface exchange experiments and X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) analyses.

Original languageEnglish
Pages (from-to)615-619
Number of pages5
JournalJournal of the American Chemical Society
Volume124
Issue number4
DOIs
Publication statusPublished - 2002 Jan 30

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Architectural control of magnetic semiconductor nanocrystals'. Together they form a unique fingerprint.

Cite this