Abstract
Previous studies have identified multiple loci for inherited susceptibility to glioma development, including the regulator of telomere elongation helicase 1 (RTEL1). However, the association between RTEL1 variants and risk of glioma has not been well understood. Therefore, we sought to comprehensively examine the genetic interaction between RTEL1 variants and risk of glioma with respect to defined histological and molecular subtypes. We employed a case-control study involving 250 adult glioma patients with previous molecular alterations and 375 population–based controls within Korean populations. Statistical analyses on the association between RTEL1 single nucleotide polymorphisms (SNPs) and glioma risk were conducted using unconditional logistic regression. Additional conditional and stepwise analyses were performed on significant RTEL1 SNPs. We detected significant associations (Bonferroni P < .05) between six SNPs (rs6089953, rs3848669, rs6010620, rs3787089, rs6062302, and rs115303435) and risk of glioma in the Korean subjects. The two coding variants, rs6062302 (D664D) and rs115303435 (A1059T), were plausibly causal variants and were independent among the significantly associated RTEL1 variants. The glioma subgroup analyses showed that the causal variants (rs6062302 and rs115303435) may be associated with increased risk of glioma regardless of histological grades and molecular alterations. This study provides a deeper understanding of relationships between RTEL1 variants and risk of glioma. Further studies are required to ascertain the impact of those variants on glioma susceptibility.
Original language | English |
---|---|
Article number | e0207660 |
Journal | PloS one |
Volume | 13 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2018 Nov |
Bibliographical note
Publisher Copyright:© 2018 Namgoong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
All Science Journal Classification (ASJC) codes
- General