Atomically engineered molybdenum di-sulfide by dual heteroatom doping for accelerating hydrogen evolution reaction on cadmium sulfide nanorods

Madhusudana Gopannagari, A. Putta Rangappa, Sumin Seo, Eunhyo Kim, K. Arun Joshi Reddy, P. Bhavani, D. Amaranatha Reddy, D. Praveen Kumar, Tae Kyu Kim

Research output: Contribution to journalArticlepeer-review


Two-dimensional transition metal dichalcogenides (TMDs) with layered nanostructures show promise as non-precious, noble-metal-free water splitting/hydrogen evolution substances. In TMDs, catalytic activity depends on exposed edges because basal planes are inactive. Changing basal planes into catalytically active sites is a challenge. Doping MoS2 with transition metals renders the surfaces of its basal planes catalytically active. Herein, we attempt to activate in-plane surface of MoS2 by doping transition metals (Fe and Co) into the crystal structure, which induces the in-plane sites for catalytic processes, and this doped MoS2 adorned to the CdS nanorods. Incorporating heteroatoms aids in the acceleration of catalytic kinetics, as the obtained activity is comparable to that of single metal doped MoS2/CdS. A remarkable hydrogen production rate of 350 mol h−1 and a 58-fold times improvement observed in optimal FeCo–MoS2 loaded CdS nanocomposite compared to that of pure CdS. This enhancement is due to the synergistic of the hetero atom doped MoS2, which enables for the efficient separation of the photogenerated charge carriers and elevates the surface shuttling characteristics for effective hydrogen production. Greater number of edge sites, increased charge carrier transport, and the introduction of new active sites are all responsible for this remarkable photocatalytic activity. For spatial separation and transportation, these concurrent principles can change physiochemical properties including active sites, surface area, band-edge potentials, and electrical conductivity. To the best of our knowledge, the current catalytic system outperforms all other MoS2 based CdS hybrids that have been reported thus far.

Original languageEnglish
Article number107047
JournalSolid State Sciences
Publication statusPublished - 2022 Dec

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean Government ( 2020H1D3A1A02081461 , 2020R1A4A1017737 , and 2022R1A2C3003081 ).

Publisher Copyright:
© 2022 Elsevier Masson SAS

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics


Dive into the research topics of 'Atomically engineered molybdenum di-sulfide by dual heteroatom doping for accelerating hydrogen evolution reaction on cadmium sulfide nanorods'. Together they form a unique fingerprint.

Cite this