Atomistic modelling of the hypervelocity dynamics of shock-compressed graphite and impacted graphene armours

Stefano Signetti, Keonwook Kang, Nicola M. Pugno, Seunghwa Ryu

Research output: Contribution to journalArticle

1 Citation (Scopus)


We present a molecular dynamics (MD) simulation study on the hypervelocity dynamics of shock compressed graphite -up to hundreds of gigapascals- and impacted multilayer graphene armours by employing the AIREBO-M potential. The Morse-type non-singular intermolecular interaction allows the usage of relatively large integration timesteps for simulating materials’ response at such high strain-rate. The MD simulation results are in good agreement with the shock Hugoniot curves and with graphite-to-diamond transition obtained from both density functional theory (DFT) and experiments available in literature. We then show that thermodynamic properties of graphite from MD calculations can be used as input for a reliable equation of state to be employed in continuum simulations. Finally, we find that the size-scaling of the hypervelocity impact properties of graphene armours matches well with the DFT results and theoretical predictions of earlier studies. Our results open a concrete possibility towards accurate and fast multiscale simulation from atomistic to continuum level of shock propagation, shock-induced phase transformation, and dynamic fracture in large or hierarchical carbon systems, such as graphene-based foams and nanocomposites.

Original languageEnglish
Article number109152
JournalComputational Materials Science
Publication statusPublished - 2019 Dec

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Computational Mathematics

Fingerprint Dive into the research topics of 'Atomistic modelling of the hypervelocity dynamics of shock-compressed graphite and impacted graphene armours'. Together they form a unique fingerprint.

  • Cite this