Abstract
In this study, an innovative approach was developed to enhance the hydrolysis through phase-separated pretreatment by removing exopolymeric substances via mild sonication followed by thermo-Fenton disintegration. The exopolymeric substances fragmentation was enhanced at the sonic specific energy input of 2.58 kJ/kg total solids. After exopolymeric substance removal, the disintegration of biomass by thermo-Fenton yield the solubilization of 29.8 % at Fe2+:H2O2 dosage and temperature of 0.009:0.036 g/g suspended solids and 80 °C as compared to thermo-Fenton alone disintegration. The polyhydroxybutyrate content of 93.1 % was accumulated by Bacillus aryabhattai at the optimum time of 42 h, while providing 70 % (v/v) pre-treated supernatant as a carbon source under nutrient-limiting condition. Moreover, the biogas generation of 0.187 L/g chemical oxygen demand was achieved using settled pretreated sludge. The pretreated sludge sample thus served as a carbon source for polyhydroxybutyrate producers as well as substrate for biogas production.
Original language | English |
---|---|
Article number | 128376 |
Journal | Bioresource technology |
Volume | 369 |
DOIs | |
Publication status | Published - 2023 Feb |
Bibliographical note
Funding Information:This work was supported by the Department of Biotechnology, India under its initiative “Mission innovation Challenge Scheme (IC4)”. The research grant from the project “A novel integrated biorefinery for conversion of lignocellulosic agro waste into value-added products and bioenergy” (BT/PR31054/PBD/26/763/2019).
Publisher Copyright:
© 2022 Elsevier Ltd
All Science Journal Classification (ASJC) codes
- Bioengineering
- Environmental Engineering
- Renewable Energy, Sustainability and the Environment
- Waste Management and Disposal