TY - GEN
T1 - Automated segmentation of three-dimensional MR brain images
AU - Park, Jonggeun
AU - Baek, Byungjun
AU - Ahn, Choong Il
AU - Ku, Kyo Bum
AU - Jeong, Dong Kyun
AU - Lee, Chulhee
PY - 2006
Y1 - 2006
N2 - Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.
AB - Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.
UR - http://www.scopus.com/inward/record.url?scp=33745153430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745153430&partnerID=8YFLogxK
U2 - 10.1117/12.655532
DO - 10.1117/12.655532
M3 - Conference contribution
AN - SCOPUS:33745153430
SN - 0819464236
SN - 9780819464231
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2006
T2 - Medical Imaging 2006: Image Processing
Y2 - 13 February 2006 through 16 February 2006
ER -