Abstract
We propose a Bayesian tracking and segmentation method of coronary arteries on coronary computed tomographic angiography (CCTA). The geometry of coronary arteries including lumen boundary is estimated in Maximum A Posteriori (MAP) framework. Three consecutive sphere based filtering is combined with a stochastic process that is based on the similarity of the consecutive local neighborhood voxels and the geometric constraint of a vessel. It is also founded on the prior knowledge that an artery can be seen locally disconnected and consist of branches which may be seemingly disconnected due to plaque build up. For such problem, an active search method is proposed to find branches and seemingly disconnected but actually connected vessel segments. Several new measures have been developed for branch detection, disconnection check and planar vesselness measure. Using public domain Rotterdam CT dataset, the accuracy of extracted centerline is demonstrated and automatic reconstruction of coronary artery mesh is shown.
Original language | English |
---|---|
Article number | e0156837 |
Journal | PloS one |
Volume | 11 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2016 Aug |
Bibliographical note
Funding Information:This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R0101-16-0171, Development of Multi-modality Imaging and 3D Simulation-Based Integrative Diagnosis-Treatment Support Software System for Cardiovascular Diseases).
Publisher Copyright:
© 2016 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
All Science Journal Classification (ASJC) codes
- General