Abstract
Data-free compression raises a new challenge because the original training dataset for a pre-trained model to be compressed is not available due to privacy or transmission issues. Thus, a common approach is to compute a reconstructed training dataset before compression. The current reconstruction methods compute the reconstructed training dataset with a generator by exploiting information from the pre-trained model. However, current reconstruction methods focus on extracting more information from the pre-trained model but do not leverage network engineering. This work is the first to consider network engineering as an approach to design the reconstruction method. Specifically, we propose the AutoReCon method, which is a neural architecture search-based reconstruction method. In the proposed AutoReCon method, the generator architecture is designed automatically given the pre-trained model for reconstruction. Experimental results show that using generators discovered by the AutoRecon method always improve the performance of data-free compression.
Original language | English |
---|---|
Title of host publication | Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 |
Editors | Zhi-Hua Zhou |
Publisher | International Joint Conferences on Artificial Intelligence |
Pages | 3470-3476 |
Number of pages | 7 |
ISBN (Electronic) | 9780999241196 |
Publication status | Published - 2021 |
Event | 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, Canada Duration: 2021 Aug 19 → 2021 Aug 27 |
Publication series
Name | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
ISSN (Print) | 1045-0823 |
Conference
Conference | 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 |
---|---|
Country/Territory | Canada |
City | Virtual, Online |
Period | 21/8/19 → 21/8/27 |
Bibliographical note
Publisher Copyright:© 2021 International Joint Conferences on Artificial Intelligence. All rights reserved.
All Science Journal Classification (ASJC) codes
- Artificial Intelligence