AVET: A Novel Transform Function to Improve Cancellable Biometrics Security

Thao Mai Dang, Thuc Dinh Nguyen, Thang Hoang, Hyunseok Kim, Andrew Beng Jin Teoh, Deokjai Choi

Research output: Contribution to journalArticlepeer-review

Abstract

Similarity preserving is a key ingredient of cancellable biometric scheme design. The notion ensures the accuracy performance of the biometric systems can be preserved after the cancellable biometric technique is applied. Random Projection is among the most commonly adopted method in cancellable biometric schemes. However, it is reversible subject to certain conditions, which disrupts the template irreversibility criterion. This invites vulnerabilities for random projection-based schemes. In this paper, we propose a novel transform function, namely Absolute Value Equations Transform (AVET), which non-linearly projects feature vectors to another domain. The transformed templates hold two main merits ensuring the user's privacy, and maintaining the system's performance simultaneously. First, by relying on the hardness of the Absolute Value Equations problem, we guarantee that AVET satisfies irreversibility. Second, by using Johnson-Lindenstrauss lemma and the inverse triangle inequality, we prove that the proposed approach has the similarity preserving property. Notably, rigorous theoretical proofs and empirical experiments are provided. The efficacy of AVET is comprehensively evaluated on both physiological and behavioral biometrics including face, ear, fingerprint, and gait. With unimodal approach, we achieve competitive performances compared to related algorithms on eight public datasets. Regarding bimodal mode, the AVET surpasses the state-of-the-art technique on all three observed datasets. To the best of our knowledge, this is the first study that attempts to develop a secure transformation to augment the role of Random Projection in the existing cancellable biometric schemes.

Original languageEnglish
Pages (from-to)758-772
Number of pages15
JournalIEEE Transactions on Information Forensics and Security
Volume18
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2005-2012 IEEE.

All Science Journal Classification (ASJC) codes

  • Safety, Risk, Reliability and Quality
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'AVET: A Novel Transform Function to Improve Cancellable Biometrics Security'. Together they form a unique fingerprint.

Cite this