Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1.48Te3 by Pb doping for low-temperature power generation

Kwanlae Kim, Gwansik Kim, Hwijong Lee, Kyu Hyoung Lee, Wooyoung Lee

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Herein, we report the results of a systematic study on the effect of Pb doping on the thermoelectric transport properties of p-type BiSbTe alloys to validate its potential applications for low-temperature power generation. The maximum power factor (~ 4.4 mW m− 1 K− 2) at 300 K was obtained using 0.31 at.% Pb-doped Bi0.52Sb1.48Te3 and was found to originate from an enlarged density of states effective mass as a result of the band engineering effect. The maximum efficiency of thermoelectric power generation (ηmax) could be enhanced by 150% at ΔT = 220 K when the Pb concentration was optimized.

Original languageEnglish
Pages (from-to)41-44
Number of pages4
JournalScripta Materialia
Volume145
DOIs
Publication statusPublished - 2018 Mar 1

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Band engineering and tuning thermoelectric transport properties of p-type Bi<sub>0.52</sub>Sb<sub>1.48</sub>Te<sub>3</sub> by Pb doping for low-temperature power generation'. Together they form a unique fingerprint.

  • Cite this