Band structure engineering of multinary chalcogenide topological insulators

Shiyou Chen, X. G. Gong, Chun Gang Duan, Zi Qiang Zhu, Jun Hao Chu, Aron Walsh, Yu Gui Yao, Jie Ma, Su Huai Wei

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Topological insulators (TIs) have been found in strained binary HgTe and ternary I-III-VI2 chalcopyrite compounds such as CuTlSe2 which have inverted band structures. However, the nontrivial band gaps of these existing binary and ternary TIs are limited to small values, usually around 10 meV or less. In this work, we reveal that a large nontrivial band gap requires the material to have a large negative crystal field splitting ΔCF at the top of the valence band and a moderately large negative s-p band gap Egs-p. These parameters can be better tuned through chemical ordering in multinary compounds. Based on this understanding, we show that a series of quaternary I2-II-IV-VI4 compounds, including Cu2HgPbSe4, Cu2CdPbSe4, Ag2HgPbSe4, and Ag2CdPbTe4, are TIs, in which Ag2HgPbSe4 has the largest TI band gap of 47 meV because it combines the optimal values of ΔCF and Egs-p.

Original languageEnglish
Article number245202
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume83
Issue number24
DOIs
Publication statusPublished - 2011 Jun 17

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Band structure engineering of multinary chalcogenide topological insulators'. Together they form a unique fingerprint.

  • Cite this