Behavior of magnetoelectric hysteresis and role of rare earth ions in multiferroicity in double perovskite Yb2CoMnO6

Jong Hyuk Kim, Ki Won Jeong, Dong Gun Oh, Hyun Jun Shin, Jae Min Hong, Jin Seok Kim, Jae Young Moon, Nara Lee, Young Jai Choi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Double-perovskite multiferroics have been investigated because alternating orders of magnetic ions act as distinct magnetic origins for ferroelectricity. In Yb2CoMnO6, the frustrated antiferromagnetic order emerging at TN = 52 K induces ferroelectric polarization perpendicular to the c axis through cooperative O2− shifts via the symmetric exchange striction. In our detailed measurements of the magnetoelectric properties of single-crystalline Yb2CoMnO6, we observe full ferromagnetic-like hysteresis loops that are strongly coupled to the dielectric constant and ferroelectric polarization at various temperatures below TN. Unlike Lu2CoMnO6 with non-magnetic Lu3+ ions, we suggest the emergence of additional ferroelectric polarization along the c axis below the ordering temperature of magnetic Yb3+ ions, TYb ≈ 20 K, based on the spin structure established from recent neutron diffraction experiments. While the proposed description for additional ferroelectricity, ascribed to the symmetric exchange striction between Yb3+ and Co2+/Mn4+ magnetic moments, is clearly given, anomalies of dielectric constants along the c axis are solely observed. Our interesting findings on magnetoelectric hysteresis and the possible development of additional ferroelectricity reveal notable characteristics of double perovskites and provide essential guidance for the further examination of magnetoelectric functional properties.

Original languageEnglish
Article number23786
JournalScientific reports
Volume11
Issue number1
DOIs
Publication statusPublished - 2021 Dec

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) through grants NRF-2017R1A5A1014862 (SRC program: vdWMRC center), NRF-2019R1A2C2002601, and NRF-2021R1A2C1006375.

Publisher Copyright:
© 2021, The Author(s).

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Behavior of magnetoelectric hysteresis and role of rare earth ions in multiferroicity in double perovskite Yb2CoMnO6'. Together they form a unique fingerprint.

Cite this