Behind-the-scenes (Bts): Wiper-occlusion canceling for advanced driver assistance systems in adverse rain environments

Junekyo Jhung, Shiho Kim

Research output: Contribution to journalArticlepeer-review

Abstract

Driving in an adverse rain environment is a crucial challenge for vision-based advanced driver assistance systems (ADAS) in the automotive industry. The vehicle windshield wiper removes adherent raindrops that cause distorted images from in-vehicle frontal view cameras, but, additionally, it causes an occlusion that can hinder visibility at the same time. The wiper-occlusion causes erroneous judgments by vision-based applications and endangers safety. This study proposes behind-the-scenes (BTS) that detects and removes wiper-occlusion in real-time image inputs under rainy weather conditions. The pixel-wise wiper masks are detected by high-pass filtering to predict the optical flow of a sequential image pair. We fine-tuned a deep learning-based optical flow model with a synthesized dataset, which was generated with pseudo-ground truth wiper masks and flows using auto-labeling with acquired real rainy images. A typical optical flow dataset with static synthetic objects is synthesized with real fast-moving objects to enhance data diversity. We annotated wiper masks and scenes as detection ground truths from the collected real images for evaluation. BTS outperforms by achieving a 0.962 SSIM and 91.6% F1 score in wiper mask detection and 88.3% F1 score in wiper image detection. Consequently, BTS enhanced the performance of vision-based image restoration and object detection applications by canceling occlusions and demonstrated it potential role in improving ADAS under rainy weather conditions.

Original languageEnglish
Article number8081
JournalSensors
Volume21
Issue number23
DOIs
Publication statusPublished - 2021 Dec 1

Bibliographical note

Funding Information:
Funding: This work was equally supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No.2020-0-00056, to create AI systems that act appropriately and effectively in novel situations that occur in open worlds) and the Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT [NRF-2019H1D3A1A01071115].

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Behind-the-scenes (Bts): Wiper-occlusion canceling for advanced driver assistance systems in adverse rain environments'. Together they form a unique fingerprint.

Cite this