Benchmarking Ultra-High-Definition Image Super-resolution

Kaihao Zhang, Dongxu Li, Wenhan Luo, Wenqi Ren, Björn Stenger, Wei Liu, Hongdong Li, Ming Hsuan Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Increasingly, modern mobile devices allow capturing images at Ultra-High-Definition (UHD) resolution, which includes 4K and 8K images. However, current single image super-resolution (SISR) methods focus on super-resolving images to ones with resolution up to high definition (HD) and ignore higher-resolution UHD images. To explore their performance on UHD images, in this paper, we first introduce two large-scale image datasets, UHDSR4K and UHDSR8K, to benchmark existing SISR methods. With 70,000 V100 GPU hours of training, we benchmark these methods on 4K and 8K resolution images under seven different settings to provide a set of baseline models. Moreover, we propose a baseline model, called Mesh Attention Network (MANet) for SISR. The MANet applies the attention mechanism in both different depths (horizontal) and different levels of receptive field (vertical). In this way, correlations among feature maps are learned, enabling the network to focus on more important features.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages14749-14758
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 2021 Oct 112021 Oct 17

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period21/10/1121/10/17

Bibliographical note

Funding Information:
This work is supported in part by the NSF CAREER Grant #1149783, ARC Centre of Excellence for Robotics Vision (CE140100016), ARC-Discovery (DP 190102261) and ARC-LIEF (190100080) grants.

Publisher Copyright:
© 2021 IEEE

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Benchmarking Ultra-High-Definition Image Super-resolution'. Together they form a unique fingerprint.

Cite this