Besov and Triebel–Lizorkin space estimates for fractional diffusion

Kôzô Yabuta, Minsuk Yang

Research output: Contribution to journalArticle

Abstract

We study Besov and Triebel–Lizorkin space estimates for fractional diffusion. We measure the smoothing effect of the fractional heat flow in terms of the Besov and Triebel–Lizorkin scale. These estimates have many applications to various partial differential equations.

Original languageEnglish
Pages (from-to)141-158
Number of pages18
JournalHiroshima Mathematical Journal
Volume48
Issue number2
Publication statusPublished - 2018 Jul 1

Fingerprint

Fractional Diffusion
Triebel-Lizorkin Space
Besov Spaces
Smoothing Effect
Heat Flow
Estimate
Fractional
Partial differential equation

All Science Journal Classification (ASJC) codes

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology

Cite this

@article{b3aebc07915b411eaddbd49fa523a6bb,
title = "Besov and Triebel–Lizorkin space estimates for fractional diffusion",
abstract = "We study Besov and Triebel–Lizorkin space estimates for fractional diffusion. We measure the smoothing effect of the fractional heat flow in terms of the Besov and Triebel–Lizorkin scale. These estimates have many applications to various partial differential equations.",
author = "K{\^o}z{\^o} Yabuta and Minsuk Yang",
year = "2018",
month = "7",
day = "1",
language = "English",
volume = "48",
pages = "141--158",
journal = "Hiroshima Mathematical Journal",
issn = "0018-2079",
publisher = "Hiroshima University",
number = "2",

}

Besov and Triebel–Lizorkin space estimates for fractional diffusion. / Yabuta, Kôzô; Yang, Minsuk.

In: Hiroshima Mathematical Journal, Vol. 48, No. 2, 01.07.2018, p. 141-158.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Besov and Triebel–Lizorkin space estimates for fractional diffusion

AU - Yabuta, Kôzô

AU - Yang, Minsuk

PY - 2018/7/1

Y1 - 2018/7/1

N2 - We study Besov and Triebel–Lizorkin space estimates for fractional diffusion. We measure the smoothing effect of the fractional heat flow in terms of the Besov and Triebel–Lizorkin scale. These estimates have many applications to various partial differential equations.

AB - We study Besov and Triebel–Lizorkin space estimates for fractional diffusion. We measure the smoothing effect of the fractional heat flow in terms of the Besov and Triebel–Lizorkin scale. These estimates have many applications to various partial differential equations.

UR - http://www.scopus.com/inward/record.url?scp=85051524763&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85051524763&partnerID=8YFLogxK

M3 - Article

VL - 48

SP - 141

EP - 158

JO - Hiroshima Mathematical Journal

JF - Hiroshima Mathematical Journal

SN - 0018-2079

IS - 2

ER -