Bidirectional energy trading and residential load scheduling with electric vehicles in the smart grid

Byung Gook Kim, Shaolei Ren, Mihaela Van Der Schaar, Jang Won Lee

Research output: Contribution to journalArticle

87 Citations (Scopus)

Abstract

Electric vehicles (EVs) will play an important role in the future smart grid because of their capabilities of storing electrical energy in their batteries during off-peak hours and supplying the stored energy to the power grid during peak hours. In this paper, we consider a power system with an aggregator and multiple customers with EVs and propose novel electricity load scheduling algorithms which, unlike previous works, jointly consider the load scheduling for appliances and the energy trading using EVs. Specifically, we allow customers to determine how much energy to purchase from or to sell to the aggregator while taking into consideration the load demands of their residential appliances and the associated electricity bill. We propose two different approaches: a collaborative and a non-collaborative approach. In the collaborative approach, we develop an optimal distributed load scheduling algorithm that maximizes the social welfare of the power system. In the non-collaborative approach, we model the energy scheduling problem as a non-cooperative game among self-interested customers, where each customer determines its own load scheduling and energy trading to maximize its own profit. In order to resolve the unfairness between heavy and light customers in the non-collaborative approach, we propose a tiered billing scheme that can control the electricity rates for customers according to their different energy consumption levels. In both approaches, we also consider the uncertainty in the load demands, with which customers' actual energy consumption may vary from the scheduled energy consumption. To study the impact of the uncertainty, we use the worst-case-uncertainty approach and develop distributed load scheduling algorithms that provide the guaranteed minimum performances in uncertain environments. Subsequently, we show when energy trading leads to an increase in the social welfare and we determine what are the customers' incentives to participate in the energy trading in various usage scenarios including practical environments with uncertain load demands.

Original languageEnglish
Article number6547831
Pages (from-to)1219-1234
Number of pages16
JournalIEEE Journal on Selected Areas in Communications
Volume31
Issue number7
DOIs
Publication statusPublished - 2013 Jul 22

Fingerprint

Electric vehicles
Scheduling algorithms
Energy utilization
Electricity
Scheduling
Profitability
Uncertainty

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Cite this

@article{e52cc67d80364477a676bc7d1c80c4fe,
title = "Bidirectional energy trading and residential load scheduling with electric vehicles in the smart grid",
abstract = "Electric vehicles (EVs) will play an important role in the future smart grid because of their capabilities of storing electrical energy in their batteries during off-peak hours and supplying the stored energy to the power grid during peak hours. In this paper, we consider a power system with an aggregator and multiple customers with EVs and propose novel electricity load scheduling algorithms which, unlike previous works, jointly consider the load scheduling for appliances and the energy trading using EVs. Specifically, we allow customers to determine how much energy to purchase from or to sell to the aggregator while taking into consideration the load demands of their residential appliances and the associated electricity bill. We propose two different approaches: a collaborative and a non-collaborative approach. In the collaborative approach, we develop an optimal distributed load scheduling algorithm that maximizes the social welfare of the power system. In the non-collaborative approach, we model the energy scheduling problem as a non-cooperative game among self-interested customers, where each customer determines its own load scheduling and energy trading to maximize its own profit. In order to resolve the unfairness between heavy and light customers in the non-collaborative approach, we propose a tiered billing scheme that can control the electricity rates for customers according to their different energy consumption levels. In both approaches, we also consider the uncertainty in the load demands, with which customers' actual energy consumption may vary from the scheduled energy consumption. To study the impact of the uncertainty, we use the worst-case-uncertainty approach and develop distributed load scheduling algorithms that provide the guaranteed minimum performances in uncertain environments. Subsequently, we show when energy trading leads to an increase in the social welfare and we determine what are the customers' incentives to participate in the energy trading in various usage scenarios including practical environments with uncertain load demands.",
author = "Kim, {Byung Gook} and Shaolei Ren and {Van Der Schaar}, Mihaela and Lee, {Jang Won}",
year = "2013",
month = "7",
day = "22",
doi = "10.1109/JSAC.2013.130706",
language = "English",
volume = "31",
pages = "1219--1234",
journal = "IEEE Journal on Selected Areas in Communications",
issn = "0733-8716",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "7",

}

Bidirectional energy trading and residential load scheduling with electric vehicles in the smart grid. / Kim, Byung Gook; Ren, Shaolei; Van Der Schaar, Mihaela; Lee, Jang Won.

In: IEEE Journal on Selected Areas in Communications, Vol. 31, No. 7, 6547831, 22.07.2013, p. 1219-1234.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Bidirectional energy trading and residential load scheduling with electric vehicles in the smart grid

AU - Kim, Byung Gook

AU - Ren, Shaolei

AU - Van Der Schaar, Mihaela

AU - Lee, Jang Won

PY - 2013/7/22

Y1 - 2013/7/22

N2 - Electric vehicles (EVs) will play an important role in the future smart grid because of their capabilities of storing electrical energy in their batteries during off-peak hours and supplying the stored energy to the power grid during peak hours. In this paper, we consider a power system with an aggregator and multiple customers with EVs and propose novel electricity load scheduling algorithms which, unlike previous works, jointly consider the load scheduling for appliances and the energy trading using EVs. Specifically, we allow customers to determine how much energy to purchase from or to sell to the aggregator while taking into consideration the load demands of their residential appliances and the associated electricity bill. We propose two different approaches: a collaborative and a non-collaborative approach. In the collaborative approach, we develop an optimal distributed load scheduling algorithm that maximizes the social welfare of the power system. In the non-collaborative approach, we model the energy scheduling problem as a non-cooperative game among self-interested customers, where each customer determines its own load scheduling and energy trading to maximize its own profit. In order to resolve the unfairness between heavy and light customers in the non-collaborative approach, we propose a tiered billing scheme that can control the electricity rates for customers according to their different energy consumption levels. In both approaches, we also consider the uncertainty in the load demands, with which customers' actual energy consumption may vary from the scheduled energy consumption. To study the impact of the uncertainty, we use the worst-case-uncertainty approach and develop distributed load scheduling algorithms that provide the guaranteed minimum performances in uncertain environments. Subsequently, we show when energy trading leads to an increase in the social welfare and we determine what are the customers' incentives to participate in the energy trading in various usage scenarios including practical environments with uncertain load demands.

AB - Electric vehicles (EVs) will play an important role in the future smart grid because of their capabilities of storing electrical energy in their batteries during off-peak hours and supplying the stored energy to the power grid during peak hours. In this paper, we consider a power system with an aggregator and multiple customers with EVs and propose novel electricity load scheduling algorithms which, unlike previous works, jointly consider the load scheduling for appliances and the energy trading using EVs. Specifically, we allow customers to determine how much energy to purchase from or to sell to the aggregator while taking into consideration the load demands of their residential appliances and the associated electricity bill. We propose two different approaches: a collaborative and a non-collaborative approach. In the collaborative approach, we develop an optimal distributed load scheduling algorithm that maximizes the social welfare of the power system. In the non-collaborative approach, we model the energy scheduling problem as a non-cooperative game among self-interested customers, where each customer determines its own load scheduling and energy trading to maximize its own profit. In order to resolve the unfairness between heavy and light customers in the non-collaborative approach, we propose a tiered billing scheme that can control the electricity rates for customers according to their different energy consumption levels. In both approaches, we also consider the uncertainty in the load demands, with which customers' actual energy consumption may vary from the scheduled energy consumption. To study the impact of the uncertainty, we use the worst-case-uncertainty approach and develop distributed load scheduling algorithms that provide the guaranteed minimum performances in uncertain environments. Subsequently, we show when energy trading leads to an increase in the social welfare and we determine what are the customers' incentives to participate in the energy trading in various usage scenarios including practical environments with uncertain load demands.

UR - http://www.scopus.com/inward/record.url?scp=84880219491&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880219491&partnerID=8YFLogxK

U2 - 10.1109/JSAC.2013.130706

DO - 10.1109/JSAC.2013.130706

M3 - Article

AN - SCOPUS:84880219491

VL - 31

SP - 1219

EP - 1234

JO - IEEE Journal on Selected Areas in Communications

JF - IEEE Journal on Selected Areas in Communications

SN - 0733-8716

IS - 7

M1 - 6547831

ER -