Bioenergy production and metallic iron (Fe) conversion from Botryococcus sp. cultivated in domestic wastewater: Algal biorefinery concept

Veeramuthu Ashokkumar, Wei Hsin Chen, Ala'a H. Al-Muhtaseb, Gopalakrishnan Kumar, Palanivel Sathishkumar, Sivakumar Pandian, Farid Nasir Ani, Chawalit Ngamcharussrivichai

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This study focused on a novel approach for biodiesel production and metallic iron synthesis using biochar obtained from the biomass residue of green microalgae Botryococcus sp. Hematite (Fe2O3) is one of the most important iron ore used in steelmaking industries. Thus, we proposed this work for the development of algal biorefinery concept at commercial scale. This work contains two phases; in the first phase, the alga was successfully cultivated on the domestic wastewater at large scale using a low-cost photobioreactor, which provided significant biomass and lipid yield. To reduce the cost involved in biomass harvesting, an auto-flocculation technique was implemented and harvested 94.8% of biomass without adding any flocculants. The biodiesel extraction was performed in an ultrasonic bath with a frequency of 25 kHz using a tungstated zirconia as a heterogeneous acid catalyst, which produced 94.1 wt% of biodiesel yield. The kinetic studies were investigated at various reaction temperature and confirmed that the reaction followed a pseudo-first-order kinetic model. The activation energy and pre-exponential factor for the transesterification reaction were found to be 45.3861 kJ mol−1 and 2.6956 min−1, respectively. In the second phase, the lipid extracted residue was converted to biochar through pyrolysis process, and the yield obtained was 41 wt%. The obtained biochar was utilized for metallic iron synthesis, and this reaction was carried out in a thermogravimetric analyzer equipped with Fourier-transform infrared spectroscopy. The results showed that the reduction behaviors was occurred in a stepwise manner rendering to the temperature and the metallic iron synthesis was found at 990 °C.

Original languageEnglish
Pages (from-to)1326-1334
Number of pages9
JournalEnergy Conversion and Management
Volume196
DOIs
Publication statusPublished - 2019 Sep 15

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology

Cite this