Abstract
Biomolecular piezoelectric materials are considered a strong candidate material for biomedical applications due to their robust piezoelectricity, biocompatibility, and low dielectric property. The electric field has been found to affect tissue development and regeneration, and the piezoelectric properties of biological materials in the human body are known to provide electric fields by pressure. Therefore, great attention has been paid to the understanding of piezoelectricity in biological tissues and its building blocks. The aim herein is to describe the principle of piezoelectricity in biological materials from the very basic building blocks (i.e., amino acids, peptides, proteins, etc.) to highly organized tissues (i.e., bones, skin, etc.). Research progress on the piezoelectricity within various biological materials is summarized, including amino acids, peptides, proteins, and tissues. The mechanisms and origin of piezoelectricity within various biological materials are also covered.
Original language | English |
---|---|
Article number | 1906989 |
Journal | Advanced Materials |
Volume | 32 |
Issue number | 14 |
DOIs | |
Publication status | Published - 2020 Apr 1 |
Bibliographical note
Funding Information:D.K. and S.A.H. contributed equally to this work. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1C1B5086524 and No. 2019R1F1A1060733), and the DGIST Start-up Fund Program of the Ministry of Science, ICT and Future Planning (No. 2019010076).
Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering