Biphasic effect of PTK7 on KDR activity in endothelial cells and angiogenesis

Won Sik Shin, Hye Won Na, Seung-Taek Lee

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Protein tyrosine kinase 7 (PTK7) is a member of the defective receptor protein tyrosine kinase family which lacks catalytic activity. Expression of PTK7 is increased in various cancers but its role in carcinogenesis is not well understood. We previously showed that disruption of PTK7 function suppresses VEGF-induced angiogenic phenotypes in HUVECs and mice. Here, we investigated molecular mechanisms for modulating VEGF-induced physiological effects by PTK7. Treatment with a high concentration of extracellular domain of PTK7 (soluble PTK7; sPTK7) or knockdown of PTK7 inhibited VEGF-induced phosphorylation of kinase insert domain receptor (KDR) but did not inhibit phosphorylation of fms-related tyrosine kinase 1 (FLT-1) in HUVECs. PTK7, more specifically sPTK7, interacted with KDR but not with FLT-1 in HUVECs and HEK293 cells. In vitro binding assay showed that sPTK7 formed oligomers with the extracellular domain of KDR (sKDR) up to an approximately 1:3 molar ratio, and vice versa. sPTK7 at lower molar ratios than sKDR enhanced the binding of VEGF to sKDR. At the same or higher molar ratios, it reduced the binding of VEGF to sKDR. Increasing concentrations of sPTK7 or increasing levels of PTK7 expression first increased and then decreased VEGF-induced KDR phosphorylation, migration, and capillary-like tube formation of HUVECs, as well as in vivo angiogenesis. Taken together, our data demonstrates that PTK7 regulates the activity of KDR biphasically by inducing oligomerization of KDR molecules at lower concentrations and by surrounding KDR molecules at higher concentrations.

Original languageEnglish
Pages (from-to)2251-2260
Number of pages10
JournalBiochimica et Biophysica Acta - Molecular Cell Research
Volume1853
Issue number10
DOIs
Publication statusPublished - 2015 Oct 1

Fingerprint

Vascular Endothelial Growth Factor Receptor-2
Protein-Tyrosine Kinases
Endothelial Cells
Vascular Endothelial Growth Factor A
Phosphorylation
HEK293 Cells
Human Umbilical Vein Endothelial Cells
Receptor Protein-Tyrosine Kinases
Carcinogenesis

All Science Journal Classification (ASJC) codes

  • Cell Biology
  • Molecular Biology
  • Medicine(all)

Cite this

@article{7cb6b581fc894d95882250f27a13c4c6,
title = "Biphasic effect of PTK7 on KDR activity in endothelial cells and angiogenesis",
abstract = "Protein tyrosine kinase 7 (PTK7) is a member of the defective receptor protein tyrosine kinase family which lacks catalytic activity. Expression of PTK7 is increased in various cancers but its role in carcinogenesis is not well understood. We previously showed that disruption of PTK7 function suppresses VEGF-induced angiogenic phenotypes in HUVECs and mice. Here, we investigated molecular mechanisms for modulating VEGF-induced physiological effects by PTK7. Treatment with a high concentration of extracellular domain of PTK7 (soluble PTK7; sPTK7) or knockdown of PTK7 inhibited VEGF-induced phosphorylation of kinase insert domain receptor (KDR) but did not inhibit phosphorylation of fms-related tyrosine kinase 1 (FLT-1) in HUVECs. PTK7, more specifically sPTK7, interacted with KDR but not with FLT-1 in HUVECs and HEK293 cells. In vitro binding assay showed that sPTK7 formed oligomers with the extracellular domain of KDR (sKDR) up to an approximately 1:3 molar ratio, and vice versa. sPTK7 at lower molar ratios than sKDR enhanced the binding of VEGF to sKDR. At the same or higher molar ratios, it reduced the binding of VEGF to sKDR. Increasing concentrations of sPTK7 or increasing levels of PTK7 expression first increased and then decreased VEGF-induced KDR phosphorylation, migration, and capillary-like tube formation of HUVECs, as well as in vivo angiogenesis. Taken together, our data demonstrates that PTK7 regulates the activity of KDR biphasically by inducing oligomerization of KDR molecules at lower concentrations and by surrounding KDR molecules at higher concentrations.",
author = "Shin, {Won Sik} and Na, {Hye Won} and Seung-Taek Lee",
year = "2015",
month = "10",
day = "1",
doi = "10.1016/j.bbamcr.2015.05.015",
language = "English",
volume = "1853",
pages = "2251--2260",
journal = "Biochimica et Biophysica Acta - Molecular Cell Research",
issn = "0167-4889",
publisher = "Elsevier",
number = "10",

}

Biphasic effect of PTK7 on KDR activity in endothelial cells and angiogenesis. / Shin, Won Sik; Na, Hye Won; Lee, Seung-Taek.

In: Biochimica et Biophysica Acta - Molecular Cell Research, Vol. 1853, No. 10, 01.10.2015, p. 2251-2260.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Biphasic effect of PTK7 on KDR activity in endothelial cells and angiogenesis

AU - Shin, Won Sik

AU - Na, Hye Won

AU - Lee, Seung-Taek

PY - 2015/10/1

Y1 - 2015/10/1

N2 - Protein tyrosine kinase 7 (PTK7) is a member of the defective receptor protein tyrosine kinase family which lacks catalytic activity. Expression of PTK7 is increased in various cancers but its role in carcinogenesis is not well understood. We previously showed that disruption of PTK7 function suppresses VEGF-induced angiogenic phenotypes in HUVECs and mice. Here, we investigated molecular mechanisms for modulating VEGF-induced physiological effects by PTK7. Treatment with a high concentration of extracellular domain of PTK7 (soluble PTK7; sPTK7) or knockdown of PTK7 inhibited VEGF-induced phosphorylation of kinase insert domain receptor (KDR) but did not inhibit phosphorylation of fms-related tyrosine kinase 1 (FLT-1) in HUVECs. PTK7, more specifically sPTK7, interacted with KDR but not with FLT-1 in HUVECs and HEK293 cells. In vitro binding assay showed that sPTK7 formed oligomers with the extracellular domain of KDR (sKDR) up to an approximately 1:3 molar ratio, and vice versa. sPTK7 at lower molar ratios than sKDR enhanced the binding of VEGF to sKDR. At the same or higher molar ratios, it reduced the binding of VEGF to sKDR. Increasing concentrations of sPTK7 or increasing levels of PTK7 expression first increased and then decreased VEGF-induced KDR phosphorylation, migration, and capillary-like tube formation of HUVECs, as well as in vivo angiogenesis. Taken together, our data demonstrates that PTK7 regulates the activity of KDR biphasically by inducing oligomerization of KDR molecules at lower concentrations and by surrounding KDR molecules at higher concentrations.

AB - Protein tyrosine kinase 7 (PTK7) is a member of the defective receptor protein tyrosine kinase family which lacks catalytic activity. Expression of PTK7 is increased in various cancers but its role in carcinogenesis is not well understood. We previously showed that disruption of PTK7 function suppresses VEGF-induced angiogenic phenotypes in HUVECs and mice. Here, we investigated molecular mechanisms for modulating VEGF-induced physiological effects by PTK7. Treatment with a high concentration of extracellular domain of PTK7 (soluble PTK7; sPTK7) or knockdown of PTK7 inhibited VEGF-induced phosphorylation of kinase insert domain receptor (KDR) but did not inhibit phosphorylation of fms-related tyrosine kinase 1 (FLT-1) in HUVECs. PTK7, more specifically sPTK7, interacted with KDR but not with FLT-1 in HUVECs and HEK293 cells. In vitro binding assay showed that sPTK7 formed oligomers with the extracellular domain of KDR (sKDR) up to an approximately 1:3 molar ratio, and vice versa. sPTK7 at lower molar ratios than sKDR enhanced the binding of VEGF to sKDR. At the same or higher molar ratios, it reduced the binding of VEGF to sKDR. Increasing concentrations of sPTK7 or increasing levels of PTK7 expression first increased and then decreased VEGF-induced KDR phosphorylation, migration, and capillary-like tube formation of HUVECs, as well as in vivo angiogenesis. Taken together, our data demonstrates that PTK7 regulates the activity of KDR biphasically by inducing oligomerization of KDR molecules at lower concentrations and by surrounding KDR molecules at higher concentrations.

UR - http://www.scopus.com/inward/record.url?scp=84938150025&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84938150025&partnerID=8YFLogxK

U2 - 10.1016/j.bbamcr.2015.05.015

DO - 10.1016/j.bbamcr.2015.05.015

M3 - Article

VL - 1853

SP - 2251

EP - 2260

JO - Biochimica et Biophysica Acta - Molecular Cell Research

JF - Biochimica et Biophysica Acta - Molecular Cell Research

SN - 0167-4889

IS - 10

ER -