Boosting charge transfers in cadmium sulfide nanorods with a few layered Ni-doped MoS2 nanosheets for enhanced photocatalytic hydrogen evolution

D. Praveen Kumar, A. Putta Rangappa, Seunghee Kim, Eunhyo Kim, K. Arun Joshi Reddy, Madhusudana Gopannagari, P. Bhavani, D. Amaranatha Reddy, Tae Kyu Kim

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


The molybdenum sulfide (MoS2) is a promising low-cost photocatalyst aimed at the hydrogen production reactions, however, obtaining a detailed understanding of its catalytic site has proved to be a challenging task. Several studies indicated that the active sites for catalytic reaction are mainly associated with the edge sites of 2D-layered MoS2, and their basal plane (in-plane) displays poor activity toward catalytic reactions. Herein, we established the simple approaches to enhance the activity of MoS2 by conversion of in-plane active sites into active surface edge sites by transition metal (Ni) doping followed by exfoliation. These activated MoS2 was utilized for enormous upgrading of CdS photocatalytic activity for hydrogen production and is roughly 249 mmol h−1 g−1, which is 70 times higher than pure CdS, showed ∼140 h stable H2 production. The amended conductivity, improved surface area and huge active sites are extremely advantageous properties expanded by metal doping to MoS2 and exfoliation. Additionally, another reason for the enhanced activity of Ni–MoS2/CdS system was due to promotion of catalytic kinetics by Ni and Mo sits, they are admirable activity of water dissociation and higher ability of hydrogen adsorption correspondingly. These modifications made of superior photogenerated charge carriers’ separation and migration for effective utilization. As far as we know, this system demonstrates the utmost effective performance among inclusive reported MoS2 based CdS composites. Remarkably, these outcomes will have abundant potential for the progress of immensely actual photocatalytic systems.

Original languageEnglish
Pages (from-to)40218-40226
Number of pages9
JournalInternational Journal of Hydrogen Energy
Issue number95
Publication statusPublished - 2022 Dec 8

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean Government ( 2020H1D3A1A02081461 , 2020R1A4A1017737 , and 2022R1A2C3003081 ).

Publisher Copyright:
© 2022

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology


Dive into the research topics of 'Boosting charge transfers in cadmium sulfide nanorods with a few layered Ni-doped MoS2 nanosheets for enhanced photocatalytic hydrogen evolution'. Together they form a unique fingerprint.

Cite this