Bottom-Up Synthesis of Carbon Quantum Dots With High Performance Photo- and Electroluminescence

Hong Hee Kim, Yeon Ju Lee, Chanho Park, Seunggun Yu, Sung Ok Won, Won Seon Seo, Cheolmin Park, Won Kook Choi

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


Although carbon quantum dots (CQDs) are of great interest because of cost effectiveness and environmental compatibility with the facile tunability of their optical properties, poor photo- and electroluminescence (EL) of CQDs limits further implementation. Here, a novel bottom-up synthetic route for fabricating highly crystalline CQDs suitable for high-brightness blue light-emitting diodes is demonstrated. The two-step solution process is based on time-controlled thermal carbonization of citric acid, followed by ligand exchange of the CQDs with oleylamine (OA) in solution. Carbonization allows for the nucleation and growth of crystalline CQDs, while OA treatment disperses the CQDs and stabilizes the solution, giving rise to CQDs with low structural defects and uniform sizes. The systematic study reveals the origin of the light emission of OA-treated CQDs by photoluminescence (PL) analysis, which yields a high quantum efficiency of ≈30%. The photoluminescence-optimized OA-treated CQDs exhibit excellent blue EL performance with a low turn-on voltage of ≈4 V and high brightness of 308 cd m−2; a negligible voltage-dependent color shift when they are employed to an inverted light-emitting diode.

Original languageEnglish
Article number1800080
JournalParticle and Particle Systems Characterization
Issue number7
Publication statusPublished - 2018 Jul

Bibliographical note

Funding Information:
This work was supported by the KIST Institutional Program.

Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics


Dive into the research topics of 'Bottom-Up Synthesis of Carbon Quantum Dots With High Performance Photo- and Electroluminescence'. Together they form a unique fingerprint.

Cite this