CA-SSL: Class-Agnostic Semi-Supervised Learning for Detection and Segmentation

Lu Qi, Jason Kuen, Zhe Lin, Jiuxiang Gu, Fengyun Rao, Dian Li, Weidong Guo, Zhen Wen, Ming Hsuan Yang, Jiaya Jia

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

To improve instance-level detection/segmentation performance, existing self-supervised and semi-supervised methods extract either task-unrelated or task-specific training signals from unlabeled data. We show that these two approaches, at the two extreme ends of the task-specificity spectrum, are suboptimal for the task performance. Utilizing too little task-specific training signals causes underfitting to the ground-truth labels of downstream tasks, while the opposite causes overfitting to the ground-truth labels. To this end, we propose a novel Class-Agnostic Semi-Supervised Learning (CA-SSL) framework to achieve a more favorable task-specificity balance in extracting training signals from unlabeled data. CA-SSL has three training stages that act on either ground-truth labels (labeled data) or pseudo labels (unlabeled data). This decoupling strategy avoids the complicated scheme in traditional SSL methods that balances the contributions from both data types. Especially, we introduce a warmup training stage to achieve a more optimal balance in task specificity by ignoring class information in the pseudo labels, while preserving localization training signals. As a result, our warmup model can better avoid underfitting/overfitting when fine-tuned on the ground-truth labels in detection and segmentation tasks. Using 3.6M unlabeled data, we achieve a significant performance gain of 4.7% over ImageNet-pretrained baseline on FCOS object detection. In addition, our warmup model demonstrates excellent transferability to other detection and segmentation frameworks.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
EditorsShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
PublisherSpringer Science and Business Media Deutschland GmbH
Pages59-77
Number of pages19
ISBN (Print)9783031198205
DOIs
Publication statusPublished - 2022
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 2022 Oct 232022 Oct 27

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13691 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period22/10/2322/10/27

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'CA-SSL: Class-Agnostic Semi-Supervised Learning for Detection and Segmentation'. Together they form a unique fingerprint.

Cite this