Abstract
A new system model reflecting the clustered structure of distributed storage is suggested to investigate bandwidth requirements for repairing failed storage nodes. Large data centers with multiple racks/disks or local networks of storage devices (e.g. sensor network) are good applications of the suggested cluster-based model. In realistic scenarios involving clustered storage structures, repairing storage nodes using intact nodes residing in other clusters is more bandwidth-consuming than restoring nodes based on information from intra-cluster nodes. Therefore, it is important to differentiate between intra-cluster repair bandwidth and cross-cluster repair bandwidth in modeling distributed storage. Capacity of the suggested model is obtained as a function of fundamental resources of distributed storage systems, namely, storage capacity, intra-cluster repair bandwidth and cross-cluster repair bandwidth. Based on the capacity expression, feasible sets of required resources which enable reliable storage are analyzed. It is shown that the cross-cluster traffic can be minimized to zero (i.e., local repair within a cluster becomes possible) by allowing extra resources on storage capacity and intra-cluster repair bandwidth, according to a law specified in a closed-form. Moreover, trade-off between cross-cluster traffic and intra-cluster traffic is observed for sufficiently large storage capacity.
Original language | English |
---|---|
Title of host publication | 2017 IEEE International Conference on Communications, ICC 2017 |
Editors | Merouane Debbah, David Gesbert, Abdelhamid Mellouk |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781467389990 |
DOIs | |
Publication status | Published - 2017 Jul 28 |
Event | 2017 IEEE International Conference on Communications, ICC 2017 - Paris, France Duration: 2017 May 21 → 2017 May 25 |
Publication series
Name | IEEE International Conference on Communications |
---|---|
ISSN (Print) | 1550-3607 |
Other
Other | 2017 IEEE International Conference on Communications, ICC 2017 |
---|---|
Country/Territory | France |
City | Paris |
Period | 17/5/21 → 17/5/25 |
Bibliographical note
Funding Information:This work is in part supported by the National Research Foundation of Korea under Grant No. 2016R1A2B4011298, and in part supported by the ICT R&D program of MSIP/IITP [2016-0-00563, Research on Adaptive Machine Learning Technology Development for Intelligent Autonomous Digital Companion].
Publisher Copyright:
© 2017 IEEE.
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Electrical and Electronic Engineering