Catalytic and Light-Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale

Amir Masoud Pourrahimi, Katherine Villa, Carmen Lorena Manzanares Palenzuela, Yulong Ying, Zdeněk Sofer, Martin Pumera

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The first models of mesoporous ZnO/Pt Janus micromotors that show fuel-free and light-powered propulsion depending on the interface roughness are shown. Two models of ZnO semiconducting particles with distinct surface morphologies and pore structures are synthesized by self-aggregation of primary nanoparticles and nanosheets into nanoscale rough and smooth microparticles, respectively. The self-assembled nanosheet model (smooth) provides a large surface for the formation of a continuous Pt layer with strong adherence, whereas the discontinuous Pt species take place inside the inter-nanoparticles pores in the self-assembled nanoparticle model (rough). The effects of the interface, surface porosity, defect, and charge transfer on the light-powered motion for both well-designed mesoporous ZnO/Pt Janus micromotors are investigated and compared to find the underlying propulsion mechanisms. The degradation of two model pollutants is demonstrated as a proof-of-concept application of these carefully engineered Janus micromotors. In this work, it is shown that by discreet material fabrication together with semiconductor/metal interface charge transport interpretation, it would be possible to develop new light-driven Janus micromotors based on other photocatalysts containing active surfaces such as TiO2.

Original languageEnglish
Article number1808678
JournalAdvanced Functional Materials
Volume29
Issue number22
DOIs
Publication statusPublished - 2019 May 31

Bibliographical note

Funding Information:
This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR). C.L.M.P. acknowledges the financial support of the European Union’s Horizon 2020 Research and innovation program under the Marie Skłodowska-Curie Actions (IF Grant Agreement No. 795347). Z.S. was supported by the Czech Science Foundation (GACR No. 16–05167S) and by the Neuron Foundation for Science.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Catalytic and Light-Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale'. Together they form a unique fingerprint.

Cite this