Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects

Hyun Ji Park, Yoonhee Jin, Jisoo Shin, Kisuk Yang, Changhyun Lee, Hee Seok Yang, Seung Woo Cho

Research output: Contribution to journalArticlepeer-review

100 Citations (Scopus)

Abstract

Over the last few decades, stem cell therapies have been highlighted for their potential to heal damaged tissue and aid in tissue reconstruction. However, materials used to deliver and support implanted cells often display limited efficacy, which has resulted in delaying translation of stem cell therapies into the clinic. In our previous work, we developed a mussel-inspired, catechol-functionalized hyaluronic acid (HA-CA) hydrogel that enabled effective cell transplantation due to its improved biocompatibility and strong tissue adhesiveness. The present study was performed to further expand the utility of HA-CA hydrogels for use in stem cell therapies to treat more clinically relevant tissue defect models. Specifically, we utilized HA-CA hydrogels to potentiate stem cell-mediated angiogenesis and osteogenesis in two tissue defect models: critical limb ischemia and critical-sized calvarial bone defect. HA-CA hydrogels were found to be less cytotoxic to human adipose-derived stem cells (hADSCs) in vitro compared to conventional photopolymerized HA hydrogels. HA-CA hydrogels also retained the angiogenic functionality of hADSCs and supported osteogenic differentiation of hADSCs. Because of their superior tissue adhesiveness, HA-CA hydrogels were able to mediate efficient engraftment of hADSCs into the defect regions. When compared to photopolymerized HA hydrogels, HA-CA hydrogels significantly enhanced hADSC-mediated therapeutic angiogenesis (promoted capillary/arteriole formation, improved vascular perfusion, attenuated ischemic muscle degeneration/fibrosis, and reduced limb amputation) and bone reconstruction (mineralized bone formation, enhanced osteogenic marker expression, and collagen deposition). This study proves the feasibility of using bioinspired HA-CA hydrogels as functional biomaterials for improved tissue regeneration in critical tissue defects.

Original languageEnglish
Pages (from-to)1939-1948
Number of pages10
JournalBiomacromolecules
Volume17
Issue number6
DOIs
Publication statusPublished - 2016 Jun 13

Bibliographical note

Funding Information:
This work was supported by a grant (2009-0083522) from the Translational Research Center for Protein Function Control (TRCP) funded by the Ministry of Science, ICT and Future Planning (MSIP), Republic of Korea. This work was also supported by a grant (NRF-2013R1A1A2A10061422) from the National Research Foundation of Korea (NRF) and a grant (HI13C1479) from the Korea Health Technology R&D Project funded by the Ministry of Health and Welfare, Republic of Korea.

Publisher Copyright:
© 2016 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects'. Together they form a unique fingerprint.

Cite this