Cerebrospinal fluid and plasma concentrations of leptin, NPY, and α-MSH in obese women and their relationship to negative energy balance

Su Youn Nam, Jurgen Kratzsch, Kyung Wook Kim, Kyung Rae Kim, Sung Kil Lim, Claude Marcus

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

Leptin and its principal mediators, NPY and α-MSH are postulated to play a pivotal role in energy balance. To determine the possibility of the disturbance in neuropeptides in human obesity and their consequent changes in response to negative energy balance, we evaluated plasma and cerebrospinal fluid (CSF) leptin, NPY, and α-MSH levels in obese women before and after weight loss in comparison with normal control women. Subjects included 16 obese women [mean body mass index (BMI), 35.6 kg/m2] before and after weight loss induced by a 2-wk very low caloric diet (800 kcal/d) and 14 normal weight women (mean BMI, 20.4 kg/m2). The CSF to plasma leptin ratio in normal weight subjects was 2.3-fold higher than that in obese subjects. After weight loss in obese subjects, plasma leptin levels decreased by 40% and CSF levels decreased by 51%. There was a positive linear correlation between CSF and plasma leptin levels at baseline in obese subjects (r = 0.74, P < 0.05) and a positive logarithmic correlation in normal weight subjects (r = 0.89, P < 0.05) and in obese subjects after weight loss (r = 0.64, P < 0.05). The BMI was negatively correlated with the CSF to plasma leptin ratio (r = -0.86, P < 0.05) in all subjects. Neither the baseline plasma levels nor the baseline CSF levels of NPY were different between normal weight subjects and obese subjects. After weight loss, the CSF NPY level decreased significantly compared with baseline values in obese subjects. The α-MSH levels in plasma and CSF did not differ significantly from controls in obese subjects at baseline or after weight loss. Baseline CSF leptin level correlated with neither the baseline CSF NPY level nor the baseline CSF α-MSH level. In conclusion, this study demonstrated that the efficiency of brain leptin delivery is reduced in human obesity and central nervous system leptin uptake involves a combination of a saturable and an unsaturable mechanism. CSF NPY and α-MSH did not differ from controls in human obesity, and the CSF NPY level decreased significantly whereas α-MSH did not differ after weight loss in obese subjects compared with baseline. There was no significant correlation between CSF leptin and CSF NPY or α-MSH. This could be the result of leptin resistance present in human obesity and/or the more complex mechanisms involved in modulating appetite and regulating energy balance in human obesity.

Original languageEnglish
Pages (from-to)4849-4853
Number of pages5
JournalJournal of Clinical Endocrinology and Metabolism
Volume86
Issue number10
DOIs
Publication statusPublished - 2001

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Endocrinology
  • Clinical Biochemistry
  • Biochemistry, medical

Fingerprint Dive into the research topics of 'Cerebrospinal fluid and plasma concentrations of leptin, NPY, and α-MSH in obese women and their relationship to negative energy balance'. Together they form a unique fingerprint.

  • Cite this