Characterization and process effects of HfO2 thin films grown by metal-organic molecular beam epitaxy

Myoung Seok Kim, Young Don Ko, Minseong Yun, Jang Hyuk Hong, Min Chang Jeong, Jae Min Myoung, Ilgu Yun

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

HfO2 dielectric layers were grown on the p-type Si(1 0 0) substrate by metal-organic molecular beam epitaxy (MOMBE). Hafnium-tetra-butoxide [Hf(O·t-C4H9)4] was used as a Hf precursor and argon gas was used as a carrier gas. The microstructure and thickness of HfO2 films were measured by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The electrical characteristics of the HfO2 layers were evaluated by high frequency (HF) capacitance-voltage (C-V) and current-voltage (I-V) measurements. The surface morphology, crystal structure, and chemical binding states of HfO2 films were also examined by atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) measurements. HF C-V and I-V measurements have shown that HfO2 layer grown by MOMBE has higher dielectric constant (k) of 20-22 and lower leakage current density of ∼10-8 A/cm2 compared with the conventional SiO2. In addition, it has been shown that the HfO2 layer has fixed oxide charge of about 8 × 1011 cm-2 and interfacial state density of about 1 × 10 12 eV-1 cm-2. The electrical characteristics and surface morphology of HfO2 films are affected by O 2/Ar gas flow ratio. Finally, post-metallization annealing (PMA) was carried out to reduce the interface state density.

Original languageEnglish
Pages (from-to)20-30
Number of pages11
JournalMaterials Science and Engineering B: Solid-State Materials for Advanced Technology
Volume123
Issue number1
DOIs
Publication statusPublished - 2005 Nov 15

Fingerprint

Molecular beam epitaxy
molecular beam epitaxy
Metals
Thin films
Surface morphology
Electric potential
Capacitance
Hafnium
thin films
Gases
metals
electric potential
Argon
Interface states
capacitance
High resolution transmission electron microscopy
Metallizing
Leakage currents
Oxides
Flow of gases

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

@article{5bab0a707234448693029f4ac36513b3,
title = "Characterization and process effects of HfO2 thin films grown by metal-organic molecular beam epitaxy",
abstract = "HfO2 dielectric layers were grown on the p-type Si(1 0 0) substrate by metal-organic molecular beam epitaxy (MOMBE). Hafnium-tetra-butoxide [Hf(O·t-C4H9)4] was used as a Hf precursor and argon gas was used as a carrier gas. The microstructure and thickness of HfO2 films were measured by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The electrical characteristics of the HfO2 layers were evaluated by high frequency (HF) capacitance-voltage (C-V) and current-voltage (I-V) measurements. The surface morphology, crystal structure, and chemical binding states of HfO2 films were also examined by atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) measurements. HF C-V and I-V measurements have shown that HfO2 layer grown by MOMBE has higher dielectric constant (k) of 20-22 and lower leakage current density of ∼10-8 A/cm2 compared with the conventional SiO2. In addition, it has been shown that the HfO2 layer has fixed oxide charge of about 8 × 1011 cm-2 and interfacial state density of about 1 × 10 12 eV-1 cm-2. The electrical characteristics and surface morphology of HfO2 films are affected by O 2/Ar gas flow ratio. Finally, post-metallization annealing (PMA) was carried out to reduce the interface state density.",
author = "Kim, {Myoung Seok} and Ko, {Young Don} and Minseong Yun and Hong, {Jang Hyuk} and Jeong, {Min Chang} and Myoung, {Jae Min} and Ilgu Yun",
year = "2005",
month = "11",
day = "15",
doi = "10.1016/j.mseb.2005.06.012",
language = "English",
volume = "123",
pages = "20--30",
journal = "Materials Science and Engineering B: Solid-State Materials for Advanced Technology",
issn = "0921-5107",
publisher = "Elsevier BV",
number = "1",

}

Characterization and process effects of HfO2 thin films grown by metal-organic molecular beam epitaxy. / Kim, Myoung Seok; Ko, Young Don; Yun, Minseong; Hong, Jang Hyuk; Jeong, Min Chang; Myoung, Jae Min; Yun, Ilgu.

In: Materials Science and Engineering B: Solid-State Materials for Advanced Technology, Vol. 123, No. 1, 15.11.2005, p. 20-30.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Characterization and process effects of HfO2 thin films grown by metal-organic molecular beam epitaxy

AU - Kim, Myoung Seok

AU - Ko, Young Don

AU - Yun, Minseong

AU - Hong, Jang Hyuk

AU - Jeong, Min Chang

AU - Myoung, Jae Min

AU - Yun, Ilgu

PY - 2005/11/15

Y1 - 2005/11/15

N2 - HfO2 dielectric layers were grown on the p-type Si(1 0 0) substrate by metal-organic molecular beam epitaxy (MOMBE). Hafnium-tetra-butoxide [Hf(O·t-C4H9)4] was used as a Hf precursor and argon gas was used as a carrier gas. The microstructure and thickness of HfO2 films were measured by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The electrical characteristics of the HfO2 layers were evaluated by high frequency (HF) capacitance-voltage (C-V) and current-voltage (I-V) measurements. The surface morphology, crystal structure, and chemical binding states of HfO2 films were also examined by atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) measurements. HF C-V and I-V measurements have shown that HfO2 layer grown by MOMBE has higher dielectric constant (k) of 20-22 and lower leakage current density of ∼10-8 A/cm2 compared with the conventional SiO2. In addition, it has been shown that the HfO2 layer has fixed oxide charge of about 8 × 1011 cm-2 and interfacial state density of about 1 × 10 12 eV-1 cm-2. The electrical characteristics and surface morphology of HfO2 films are affected by O 2/Ar gas flow ratio. Finally, post-metallization annealing (PMA) was carried out to reduce the interface state density.

AB - HfO2 dielectric layers were grown on the p-type Si(1 0 0) substrate by metal-organic molecular beam epitaxy (MOMBE). Hafnium-tetra-butoxide [Hf(O·t-C4H9)4] was used as a Hf precursor and argon gas was used as a carrier gas. The microstructure and thickness of HfO2 films were measured by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The electrical characteristics of the HfO2 layers were evaluated by high frequency (HF) capacitance-voltage (C-V) and current-voltage (I-V) measurements. The surface morphology, crystal structure, and chemical binding states of HfO2 films were also examined by atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) measurements. HF C-V and I-V measurements have shown that HfO2 layer grown by MOMBE has higher dielectric constant (k) of 20-22 and lower leakage current density of ∼10-8 A/cm2 compared with the conventional SiO2. In addition, it has been shown that the HfO2 layer has fixed oxide charge of about 8 × 1011 cm-2 and interfacial state density of about 1 × 10 12 eV-1 cm-2. The electrical characteristics and surface morphology of HfO2 films are affected by O 2/Ar gas flow ratio. Finally, post-metallization annealing (PMA) was carried out to reduce the interface state density.

UR - http://www.scopus.com/inward/record.url?scp=24644432038&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=24644432038&partnerID=8YFLogxK

U2 - 10.1016/j.mseb.2005.06.012

DO - 10.1016/j.mseb.2005.06.012

M3 - Article

VL - 123

SP - 20

EP - 30

JO - Materials Science and Engineering B: Solid-State Materials for Advanced Technology

JF - Materials Science and Engineering B: Solid-State Materials for Advanced Technology

SN - 0921-5107

IS - 1

ER -