Abstract
Intelligent packaging with indicators that provide information about the quality of food products can inform the consumer regarding food safety and reduce food waste. A solid material for a pH-responsive indicator was developed from hydroxypropyl methylcellulose (HPMC) composited with microcrystalline cellulose (MCC). MCC at 5%, 10%, 20%, and 30% w/w was introduced into the HPMC matrix and the physical, barrier, thermal, and optical properties of the HPMC/MCC biocomposite (HMB) films were analyzed. At 5, 10, and 20% MCC, improved mechanical, transparency, and barrier properties were observed, where HMB with 20% of MCC (H20MB) showed the best performance. Therefore, H20MB was selected as the biodegradable solid material for fabricating Roselle anthocyanins (RA) pH sensing indicators. The performance of the RA-H20MB indicator was evaluated by monitoring its response to ammonia vapor and tracking freshness status of chicken tenderloin. The RA-H20MB showed a clear color change with respect to ammonia exposure and quality change of chicken tenderloin; the color changed from red to magenta, purple and green, respectively. These results indicated that RA-H20MB can be used as a biodegradable pH sensing indicator to determine food quality and freshness.
Original language | English |
---|---|
Article number | 2752 |
Journal | Molecules |
Volume | 27 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2022 May 1 |
Bibliographical note
Funding Information:Acknowledgments: This work has been partially supported by BK21+ program funded by the Ministry of Education, Republic of Korea.
Publisher Copyright:
© 2022, MDPI. All rights reserved.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Chemistry (miscellaneous)
- Molecular Medicine
- Pharmaceutical Science
- Drug Discovery
- Physical and Theoretical Chemistry
- Organic Chemistry