TY - JOUR
T1 - Characterization of nonmetallic inclusions in high-manganese and aluminum-alloyed austenitic steels
AU - Park, Joo Hyun
AU - Kim, Dong Jin
AU - Min, Dong Joon
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/7
Y1 - 2012/7
N2 - The effects of Al and Mn contents on the size, composition, and three-dimensional morphologies of inclusions formed in Fe-xMn-yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) steels were investigated to enhance our understanding of the inclusion formation behavior in high Mn-Al-alloyed steels. By assuming that the alumina is a dominant oxide compound, the volume fraction of inclusions estimated from the chemical analysis, i.e., insoluble Al, in the Fe-Mn-3Al steels was larger than the inclusion volume fractions in the Fe-Mn-1Al and Fe-Mn- 6Al steels. A similar tendency was found in the analysis of inclusions from a potentiostatic electrolytic extraction method. This finding could be explained from the terminal velocities of the compounds, which was affected by the thermophysical properties of Fe-Mn-Al steels. The inclusions formed in the Fe-Mn-Al-alloyed steels are classified into seven types according to chemistry and morphology: (1) single Al 2O 3 particle, (2) single AlN or AlON particle, (3) MnAl 2O 4 single galaxite spinel particle, (4) Al 2O 3(-Al(O)N) agglomerate, (5) single Mn(S,Se) particle, (6) oxide core with Mn(S,Se) skin (wrap), and (7) Mn(S,Se) core with Al 2O 3(-Al(O)N) aggregate (or bump). The Mn(S,Se) compounds were formed by the contamination of the steels by Se from the electrolytic Mn. Therefore, the raw materials (Mn) should be used carefully in the melting and casting processes of Fe-Mn-Al-alloyed steels.
AB - The effects of Al and Mn contents on the size, composition, and three-dimensional morphologies of inclusions formed in Fe-xMn-yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) steels were investigated to enhance our understanding of the inclusion formation behavior in high Mn-Al-alloyed steels. By assuming that the alumina is a dominant oxide compound, the volume fraction of inclusions estimated from the chemical analysis, i.e., insoluble Al, in the Fe-Mn-3Al steels was larger than the inclusion volume fractions in the Fe-Mn-1Al and Fe-Mn- 6Al steels. A similar tendency was found in the analysis of inclusions from a potentiostatic electrolytic extraction method. This finding could be explained from the terminal velocities of the compounds, which was affected by the thermophysical properties of Fe-Mn-Al steels. The inclusions formed in the Fe-Mn-Al-alloyed steels are classified into seven types according to chemistry and morphology: (1) single Al 2O 3 particle, (2) single AlN or AlON particle, (3) MnAl 2O 4 single galaxite spinel particle, (4) Al 2O 3(-Al(O)N) agglomerate, (5) single Mn(S,Se) particle, (6) oxide core with Mn(S,Se) skin (wrap), and (7) Mn(S,Se) core with Al 2O 3(-Al(O)N) aggregate (or bump). The Mn(S,Se) compounds were formed by the contamination of the steels by Se from the electrolytic Mn. Therefore, the raw materials (Mn) should be used carefully in the melting and casting processes of Fe-Mn-Al-alloyed steels.
UR - http://www.scopus.com/inward/record.url?scp=84862778499&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862778499&partnerID=8YFLogxK
U2 - 10.1007/s11661-012-1088-6
DO - 10.1007/s11661-012-1088-6
M3 - Article
AN - SCOPUS:84862778499
VL - 43
SP - 2316
EP - 2324
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
SN - 1073-5623
IS - 7
ER -