Abstract
Bell state analyzer (BSA) is one of the most crucial apparatuses in photonic quantum information processing. While linear optics provide a practical way to implement BSA, it provides unavoidable errors when inputs are not ideal single-photon states. Here, we propose a simple method to deduce the BSA for single-photon inputs using weak coherent pulses. By applying the method to Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution, we experimentally verify the feasibility and effectiveness of the method.
Original language | English |
---|---|
Article number | 149 |
Journal | Quantum Information Processing |
Volume | 20 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2021 Apr |
Bibliographical note
Funding Information:This work was supported by the NRF programs (2019M3E4A1079777, 2019R1A2C2006381, 2019M3E4A107866011), the IITP programs (2020-0-00947, 2020-0-00972), and the KIST research program (2E30620).
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Statistical and Nonlinear Physics
- Theoretical Computer Science
- Signal Processing
- Modelling and Simulation
- Electrical and Electronic Engineering