Charging Characteristics of Rotary HTS Flux Pump with Several Superconducting Wires

Seunghak Han, Jeyull Lee, Haeryong Jeon, Ho Min Kim, Ji Hyung Kim, Young Sik Jo, Hyung Wook Kim, Tae Kuk Ko, Yong Soo Yoon

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Higherature superconducting (HTS) flux pumps are used to charge HTS coils at cryogenic temperatures without thermal and mechanical contact with the power supply at room temperature. We found that the larger the alternating magnetic field (AMF) penetrating into the HTS wire, the faster is the current charge rate in the HTS coil and the larger will be the amount of charge. AMF causes vortex pinning of the HTS wire to move, resulting in dynamic resistance (Rdyn) and electromotive force (EMF). Charging characteristics are determined by Rdyn and EMF which are generated by effective internal resistance (Reff) and open-circuit voltage (OCV), respectively. Even if AMF of the same magnitude penetrates the wires, the size of Reff and EMF generated will vary depending on the characteristics of the HTS wires. Therefore, in this study, Reff and OCV of a HTS wire are measured and compared with the results of HTS coil charging using a flux pump.

Original languageEnglish
Article number8653858
JournalIEEE Transactions on Applied Superconductivity
Volume29
Issue number5
DOIs
Publication statusPublished - 2019 Aug

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Charging Characteristics of Rotary HTS Flux Pump with Several Superconducting Wires'. Together they form a unique fingerprint.

  • Cite this