Chemical bonding states and dopant redistribution of heavily phosphorus-doped epitaxial silicon films: Effects of millisecond laser annealing and doping concentration

H. Y. Ryu, M. Lee, H. Park, D. H. Ko

Research output: Contribution to journalArticle

Abstract

We investigated the effect of millisecond (ms) laser annealing and doping concentration on the chemical bonding states and dopant behaviors of P-doped epitaxial Si (Si:P) layers grown on Si (1 0 0) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS), secondary-ion mass spectroscopy (SIMS) and Auger electron spectroscopy (AES) measurements. Our XPS results showed that the intensities of P 2p peaks for Si:P films were increased with P concentration and subsequent laser annealing. From the SIMS and AES measurement results, we found that P atoms were slightly accumulated at the near-surface region of the Si:P film by the laser annealing, while macroscopic P concentration being maintained in the whole Si:P films without significant diffusion of P atoms toward the Si (1 0 0) substrate. In addition, we performed ex-situ HF cleaning on the as-grown and laser-annealed Si:P films in order to precisely measure the change in chemical states and dopant distribution at the near-surface region. The intensities of the P 2p peak in the as-grown Si:P films were increased after the HF cleaning due to the removal of native oxide layers from the Si:P films. In contrast, the decrease in P 2p peak intensities was observed in the laser-annealed Si:P films after the HF cleaning, indicating the dopant loss from the near-surface region with native oxide removal.

Original languageEnglish
Article number144447
JournalApplied Surface Science
Volume504
DOIs
Publication statusPublished - 2020 Feb 28

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Chemical bonding states and dopant redistribution of heavily phosphorus-doped epitaxial silicon films: Effects of millisecond laser annealing and doping concentration'. Together they form a unique fingerprint.

  • Cite this