Chemical vapor sensing properties of graphene based on geometrical evaluation

Sukju Hwang, Juhwan Lim, Hyung Goo Park, Whan Kyun Kim, Duck Hwan Kim, In Sang Song, Jae Hun Kim, Seok Lee, Deok Ha Woo, Seong Chan Jun

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Graphene is a promising candidate for chemical vapor sensing. We prepared graphene sheets from highly oriented pyrolytic graphite through mechanical cleavage in order to investigate their responses to NH 3 and NO 2 as electron donors and acceptors, respectively. We investigated how the geometric characteristics of graphene, such as length-to-width (L/w) ratio and number of layers, affect chemical sensing properties at room temperature and ambient atmosphere. In this study, the L/w ratio of an individual graphene sheet, which is related to graphene conductivity, dominated the NH 3 sensing characteristics, while the number of graphene layers had no significant effect. We also studied the effects of various thermal treatments on graphene sensitivity and recovery time in an ambient atmosphere. This study confirms the effects of geometry, operation temperature and gas concentration on the NH 3 and NO 2 sensing performances of graphene.

Original languageEnglish
Pages (from-to)1017-1022
Number of pages6
JournalCurrent Applied Physics
Volume12
Issue number4
DOIs
Publication statusPublished - 2012 Jul 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Physics and Astronomy(all)

Cite this

Hwang, S., Lim, J., Park, H. G., Kim, W. K., Kim, D. H., Song, I. S., Kim, J. H., Lee, S., Woo, D. H., & Chan Jun, S. (2012). Chemical vapor sensing properties of graphene based on geometrical evaluation. Current Applied Physics, 12(4), 1017-1022. https://doi.org/10.1016/j.cap.2011.12.021