Chemically tailorable colloidal particles from infinite coordination polymers

Moonhyun Oh, Chad A. Mirkin

Research output: Contribution to journalArticle

498 Citations (Scopus)

Abstract

Micrometre- and nanometre-sized particles play important roles in many applications, including catalysis1, optics2,3, biosensing4-8 and data storage9. Organic particles 10 are usually prepared through polymerization of suitable monomers11 or precipitation methods12. In the case of inorganic materials, particle fabrication tends to involve the reduction of a metal salt13, or the controlled mixing of salt solutions supplying a metal cation and an elemental anion (for example, S2-, Se 2-, O2-)14, respectively; in some instances, these methods even afford direct control over the shape of the particles produced14-17. Another class of materials are metal-organic coordination polymers18-23, which are based on metal ions coordinated by polydentate organic ligands and explored for potential use in catalysis 18, gas storage19,20, nonlinear optics21 and molecular recognition and separations22,23. In a subset of these materials, the use of organometallic complexes as ligands (so-called metalloligands) provides an additional level of tailorability, but these materials have so far not yet been fashioned into nano- or microparticles. Here we show that simple addition of an initiation solvent to a precursor solution of metal ions and metalloligands results in the spontaneous and fully reversible formation of a new class of metal-metalloligand particles. We observe initial formation of particles with diameters of a few hundred nanometres, which then coalesce and anneal into uniform and smooth microparticles. The ease with which these particles can be fabricated, and the ability to tailor their chemical and physical properties through the choice of metal and organic ligand used, should facilitate investigations of their scope for practical applications.

Original languageEnglish
Pages (from-to)651-654
Number of pages4
JournalNature
Volume438
Issue number7068
DOIs
Publication statusPublished - 2005 Dec 1

Fingerprint

Polymers
Metals
Ligands
Ions
Catalysis
Polymerization
Nanoparticles
Anions
Cations
Salts
Gases

All Science Journal Classification (ASJC) codes

  • General

Cite this

Oh, Moonhyun ; Mirkin, Chad A. / Chemically tailorable colloidal particles from infinite coordination polymers. In: Nature. 2005 ; Vol. 438, No. 7068. pp. 651-654.
@article{f823299c1e794cc4b57f42a82064cace,
title = "Chemically tailorable colloidal particles from infinite coordination polymers",
abstract = "Micrometre- and nanometre-sized particles play important roles in many applications, including catalysis1, optics2,3, biosensing4-8 and data storage9. Organic particles 10 are usually prepared through polymerization of suitable monomers11 or precipitation methods12. In the case of inorganic materials, particle fabrication tends to involve the reduction of a metal salt13, or the controlled mixing of salt solutions supplying a metal cation and an elemental anion (for example, S2-, Se 2-, O2-)14, respectively; in some instances, these methods even afford direct control over the shape of the particles produced14-17. Another class of materials are metal-organic coordination polymers18-23, which are based on metal ions coordinated by polydentate organic ligands and explored for potential use in catalysis 18, gas storage19,20, nonlinear optics21 and molecular recognition and separations22,23. In a subset of these materials, the use of organometallic complexes as ligands (so-called metalloligands) provides an additional level of tailorability, but these materials have so far not yet been fashioned into nano- or microparticles. Here we show that simple addition of an initiation solvent to a precursor solution of metal ions and metalloligands results in the spontaneous and fully reversible formation of a new class of metal-metalloligand particles. We observe initial formation of particles with diameters of a few hundred nanometres, which then coalesce and anneal into uniform and smooth microparticles. The ease with which these particles can be fabricated, and the ability to tailor their chemical and physical properties through the choice of metal and organic ligand used, should facilitate investigations of their scope for practical applications.",
author = "Moonhyun Oh and Mirkin, {Chad A.}",
year = "2005",
month = "12",
day = "1",
doi = "10.1038/nature04191",
language = "English",
volume = "438",
pages = "651--654",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7068",

}

Chemically tailorable colloidal particles from infinite coordination polymers. / Oh, Moonhyun; Mirkin, Chad A.

In: Nature, Vol. 438, No. 7068, 01.12.2005, p. 651-654.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Chemically tailorable colloidal particles from infinite coordination polymers

AU - Oh, Moonhyun

AU - Mirkin, Chad A.

PY - 2005/12/1

Y1 - 2005/12/1

N2 - Micrometre- and nanometre-sized particles play important roles in many applications, including catalysis1, optics2,3, biosensing4-8 and data storage9. Organic particles 10 are usually prepared through polymerization of suitable monomers11 or precipitation methods12. In the case of inorganic materials, particle fabrication tends to involve the reduction of a metal salt13, or the controlled mixing of salt solutions supplying a metal cation and an elemental anion (for example, S2-, Se 2-, O2-)14, respectively; in some instances, these methods even afford direct control over the shape of the particles produced14-17. Another class of materials are metal-organic coordination polymers18-23, which are based on metal ions coordinated by polydentate organic ligands and explored for potential use in catalysis 18, gas storage19,20, nonlinear optics21 and molecular recognition and separations22,23. In a subset of these materials, the use of organometallic complexes as ligands (so-called metalloligands) provides an additional level of tailorability, but these materials have so far not yet been fashioned into nano- or microparticles. Here we show that simple addition of an initiation solvent to a precursor solution of metal ions and metalloligands results in the spontaneous and fully reversible formation of a new class of metal-metalloligand particles. We observe initial formation of particles with diameters of a few hundred nanometres, which then coalesce and anneal into uniform and smooth microparticles. The ease with which these particles can be fabricated, and the ability to tailor their chemical and physical properties through the choice of metal and organic ligand used, should facilitate investigations of their scope for practical applications.

AB - Micrometre- and nanometre-sized particles play important roles in many applications, including catalysis1, optics2,3, biosensing4-8 and data storage9. Organic particles 10 are usually prepared through polymerization of suitable monomers11 or precipitation methods12. In the case of inorganic materials, particle fabrication tends to involve the reduction of a metal salt13, or the controlled mixing of salt solutions supplying a metal cation and an elemental anion (for example, S2-, Se 2-, O2-)14, respectively; in some instances, these methods even afford direct control over the shape of the particles produced14-17. Another class of materials are metal-organic coordination polymers18-23, which are based on metal ions coordinated by polydentate organic ligands and explored for potential use in catalysis 18, gas storage19,20, nonlinear optics21 and molecular recognition and separations22,23. In a subset of these materials, the use of organometallic complexes as ligands (so-called metalloligands) provides an additional level of tailorability, but these materials have so far not yet been fashioned into nano- or microparticles. Here we show that simple addition of an initiation solvent to a precursor solution of metal ions and metalloligands results in the spontaneous and fully reversible formation of a new class of metal-metalloligand particles. We observe initial formation of particles with diameters of a few hundred nanometres, which then coalesce and anneal into uniform and smooth microparticles. The ease with which these particles can be fabricated, and the ability to tailor their chemical and physical properties through the choice of metal and organic ligand used, should facilitate investigations of their scope for practical applications.

UR - http://www.scopus.com/inward/record.url?scp=28444454920&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=28444454920&partnerID=8YFLogxK

U2 - 10.1038/nature04191

DO - 10.1038/nature04191

M3 - Article

C2 - 16319888

AN - SCOPUS:28444454920

VL - 438

SP - 651

EP - 654

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7068

ER -