Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0.52Sb1.48Te3

Kwanlae Kim, Gwansik Kim, Sang Il Kim, Kyu Hyoung Lee, Wooyoung Lee

Research output: Contribution to journalArticle

Abstract

The feasibility of using Bi2Te3-based alloys in low-grade heat thermoelectric power generation has been intensively investigated via a substitutional doping approach over the last decade. However, the comprehensive and quantitative understanding of the electronic and thermal transport parameters of doped Bi2Te3-based alloys including their carrier concentration (nc), carrier mobility (μHall), density of state (DOS) effective mass (md ), and electronic (κele), lattice (κlat), and bipolar thermal (κbp) conductivities is still elusive. The understanding of these parameters is a prerequisite for designing the modules for real-time applications. In this study, we investigated the effect of Pb, Ag, and Cu doping on the thermoelectric transport parameters of p-type Bi0.52Sb1.48Te3 (BST) both theoretically and experimentally. The thermoelectric transport properties of BST and their temperature dependences could be systematically tuned in a low-temperature range by controlled doping of Pb, Ag, and Cu mainly because of the increased concentration of the majority hole carriers. In addition, a zT value of 1 could be obtained over the wide temperature range of 300–400 K by optimizing the doping elements and contents because of the synergetic effect of the suppression of bipolar conduction at higher temperatures and the gradual increase in md with the doping content at nc < 1020 cm−3.

Original languageEnglish
Pages (from-to)593-602
Number of pages10
JournalJournal of Alloys and Compounds
Volume772
DOIs
Publication statusPublished - 2019 Jan 25

Fingerprint

Transport properties
Doping (additives)
Temperature
Carrier mobility
Thermoelectric power
Chemical elements
Power generation
Carrier concentration
Thermal conductivity
Hot Temperature

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Cite this

@article{6e5f6f95cc1f42eba3693d8b56e97441,
title = "Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0.52Sb1.48Te3",
abstract = "The feasibility of using Bi2Te3-based alloys in low-grade heat thermoelectric power generation has been intensively investigated via a substitutional doping approach over the last decade. However, the comprehensive and quantitative understanding of the electronic and thermal transport parameters of doped Bi2Te3-based alloys including their carrier concentration (nc), carrier mobility (μHall), density of state (DOS) effective mass (md ∗), and electronic (κele), lattice (κlat), and bipolar thermal (κbp) conductivities is still elusive. The understanding of these parameters is a prerequisite for designing the modules for real-time applications. In this study, we investigated the effect of Pb, Ag, and Cu doping on the thermoelectric transport parameters of p-type Bi0.52Sb1.48Te3 (BST) both theoretically and experimentally. The thermoelectric transport properties of BST and their temperature dependences could be systematically tuned in a low-temperature range by controlled doping of Pb, Ag, and Cu mainly because of the increased concentration of the majority hole carriers. In addition, a zT value of 1 could be obtained over the wide temperature range of 300–400 K by optimizing the doping elements and contents because of the synergetic effect of the suppression of bipolar conduction at higher temperatures and the gradual increase in md ∗ with the doping content at nc < 1020 cm−3.",
author = "Kwanlae Kim and Gwansik Kim and Kim, {Sang Il} and Lee, {Kyu Hyoung} and Wooyoung Lee",
year = "2019",
month = "1",
day = "25",
doi = "10.1016/j.jallcom.2018.09.099",
language = "English",
volume = "772",
pages = "593--602",
journal = "Journal of Alloys and Compounds",
issn = "0925-8388",
publisher = "Elsevier BV",

}

Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0.52Sb1.48Te3 . / Kim, Kwanlae; Kim, Gwansik; Kim, Sang Il; Lee, Kyu Hyoung; Lee, Wooyoung.

In: Journal of Alloys and Compounds, Vol. 772, 25.01.2019, p. 593-602.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0.52Sb1.48Te3

AU - Kim, Kwanlae

AU - Kim, Gwansik

AU - Kim, Sang Il

AU - Lee, Kyu Hyoung

AU - Lee, Wooyoung

PY - 2019/1/25

Y1 - 2019/1/25

N2 - The feasibility of using Bi2Te3-based alloys in low-grade heat thermoelectric power generation has been intensively investigated via a substitutional doping approach over the last decade. However, the comprehensive and quantitative understanding of the electronic and thermal transport parameters of doped Bi2Te3-based alloys including their carrier concentration (nc), carrier mobility (μHall), density of state (DOS) effective mass (md ∗), and electronic (κele), lattice (κlat), and bipolar thermal (κbp) conductivities is still elusive. The understanding of these parameters is a prerequisite for designing the modules for real-time applications. In this study, we investigated the effect of Pb, Ag, and Cu doping on the thermoelectric transport parameters of p-type Bi0.52Sb1.48Te3 (BST) both theoretically and experimentally. The thermoelectric transport properties of BST and their temperature dependences could be systematically tuned in a low-temperature range by controlled doping of Pb, Ag, and Cu mainly because of the increased concentration of the majority hole carriers. In addition, a zT value of 1 could be obtained over the wide temperature range of 300–400 K by optimizing the doping elements and contents because of the synergetic effect of the suppression of bipolar conduction at higher temperatures and the gradual increase in md ∗ with the doping content at nc < 1020 cm−3.

AB - The feasibility of using Bi2Te3-based alloys in low-grade heat thermoelectric power generation has been intensively investigated via a substitutional doping approach over the last decade. However, the comprehensive and quantitative understanding of the electronic and thermal transport parameters of doped Bi2Te3-based alloys including their carrier concentration (nc), carrier mobility (μHall), density of state (DOS) effective mass (md ∗), and electronic (κele), lattice (κlat), and bipolar thermal (κbp) conductivities is still elusive. The understanding of these parameters is a prerequisite for designing the modules for real-time applications. In this study, we investigated the effect of Pb, Ag, and Cu doping on the thermoelectric transport parameters of p-type Bi0.52Sb1.48Te3 (BST) both theoretically and experimentally. The thermoelectric transport properties of BST and their temperature dependences could be systematically tuned in a low-temperature range by controlled doping of Pb, Ag, and Cu mainly because of the increased concentration of the majority hole carriers. In addition, a zT value of 1 could be obtained over the wide temperature range of 300–400 K by optimizing the doping elements and contents because of the synergetic effect of the suppression of bipolar conduction at higher temperatures and the gradual increase in md ∗ with the doping content at nc < 1020 cm−3.

UR - http://www.scopus.com/inward/record.url?scp=85053513462&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053513462&partnerID=8YFLogxK

U2 - 10.1016/j.jallcom.2018.09.099

DO - 10.1016/j.jallcom.2018.09.099

M3 - Article

VL - 772

SP - 593

EP - 602

JO - Journal of Alloys and Compounds

T2 - Journal of Alloys and Compounds

JF - Journal of Alloys and Compounds

SN - 0925-8388

ER -