Coded Matrix Multiplication on a Group-Based Model

Muah Kim, Jy Yong Sohn, Jaekyun Moon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Coded distributed computing has been considered as a promising technique which makes large-scale systems robust to the "straggler" workers. Yet, practical system models for distributed computing have not been available that reflect the clustered or grouped structure of real-world computing servers. Also, the large variations in the computing power and bandwidth capabilities across different servers have not been properly modeled. We suggest a group-based model to reflect practical conditions and develop an appropriate coding scheme for this model. The suggested code, called group code, employs parallel encoding for each group. We show that the suggested coding scheme can asymptotically achieve optimal computing time in the regime of infinite n, the number of workers. While theoretical analysis is conducted in the asymptotic regime, numerical results also show that the suggested scheme achieves near-optimal computing time for any finite but reasonably large n. Moreover, we demonstrate that decoding complexity of the suggested scheme is significantly reduced by the virtue of parallel decoding.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages722-726
Number of pages5
ISBN (Electronic)9781538692912
DOIs
Publication statusPublished - 2019 Jul
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 2019 Jul 72019 Jul 12

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period19/7/719/7/12

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Coded Matrix Multiplication on a Group-Based Model'. Together they form a unique fingerprint.

Cite this