Combined reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts to produce synthesis gas for gas to liquid (GTL) process

Hyunseog Roh, Kee Young Koo, Wang Lai Yoon

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts have been prepared by a co-precipitation method to develop catalysts suitable for synthesis gas production for gas to liquid (GTL) process. A conventional impregnation method was also employed to prepare Ni/CeO2, Ni/ZrO2 and Ni/Ce0.8Zr0.2O2 catalysts to compare the impregnated catalysts with the co-precipitated ones. Ni content was fixed at 15% for both cases. It has been confirmed that the co-precipitated Ni-CeO2 and Ni-Ce0.8Zr0.2O2 catalysts exhibited relatively high activity as well as stability, while the impregnated Ni/CeO2 and Ni/Ce0.8Zr0.2O2 catalysts slowly deactivated with time on stream at 800 °C. At the temperature range from 700 to 750 °C, co-precipitated Ni-Ce0.8Zr0.2O2 catalyst showed higher CH4 and CO2 conversion than Ni-CeO2 catalyst. The enhanced catalytic activity and stability of the co-precipitated Ni-Ce0.8Zr0.2O2 catalyst is due to the combination of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and finely dispersed nano-sized NiO crystallites resulting in intimate contact between Ni and support, better Ni dispersion, and enhanced oxygen transfer during the reaction.

Original languageEnglish
Pages (from-to)71-75
Number of pages5
JournalCatalysis Today
Volume146
Issue number1-2
DOIs
Publication statusPublished - 2009 Aug 15

Fingerprint

Synthesis gas
Methane
Reforming reactions
Gases
Catalysts
Liquids
Coprecipitation
Crystallites
Impregnation
Catalyst activity
Oxygen
Crystalline materials

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)

Cite this

@article{670dfdbaa1e6469fa6ad72a2a1e2f357,
title = "Combined reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts to produce synthesis gas for gas to liquid (GTL) process",
abstract = "Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts have been prepared by a co-precipitation method to develop catalysts suitable for synthesis gas production for gas to liquid (GTL) process. A conventional impregnation method was also employed to prepare Ni/CeO2, Ni/ZrO2 and Ni/Ce0.8Zr0.2O2 catalysts to compare the impregnated catalysts with the co-precipitated ones. Ni content was fixed at 15{\%} for both cases. It has been confirmed that the co-precipitated Ni-CeO2 and Ni-Ce0.8Zr0.2O2 catalysts exhibited relatively high activity as well as stability, while the impregnated Ni/CeO2 and Ni/Ce0.8Zr0.2O2 catalysts slowly deactivated with time on stream at 800 °C. At the temperature range from 700 to 750 °C, co-precipitated Ni-Ce0.8Zr0.2O2 catalyst showed higher CH4 and CO2 conversion than Ni-CeO2 catalyst. The enhanced catalytic activity and stability of the co-precipitated Ni-Ce0.8Zr0.2O2 catalyst is due to the combination of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and finely dispersed nano-sized NiO crystallites resulting in intimate contact between Ni and support, better Ni dispersion, and enhanced oxygen transfer during the reaction.",
author = "Hyunseog Roh and Koo, {Kee Young} and Yoon, {Wang Lai}",
year = "2009",
month = "8",
day = "15",
doi = "10.1016/j.cattod.2009.01.001",
language = "English",
volume = "146",
pages = "71--75",
journal = "Catalysis Today",
issn = "0920-5861",
publisher = "Elsevier",
number = "1-2",

}

Combined reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts to produce synthesis gas for gas to liquid (GTL) process. / Roh, Hyunseog; Koo, Kee Young; Yoon, Wang Lai.

In: Catalysis Today, Vol. 146, No. 1-2, 15.08.2009, p. 71-75.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Combined reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts to produce synthesis gas for gas to liquid (GTL) process

AU - Roh, Hyunseog

AU - Koo, Kee Young

AU - Yoon, Wang Lai

PY - 2009/8/15

Y1 - 2009/8/15

N2 - Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts have been prepared by a co-precipitation method to develop catalysts suitable for synthesis gas production for gas to liquid (GTL) process. A conventional impregnation method was also employed to prepare Ni/CeO2, Ni/ZrO2 and Ni/Ce0.8Zr0.2O2 catalysts to compare the impregnated catalysts with the co-precipitated ones. Ni content was fixed at 15% for both cases. It has been confirmed that the co-precipitated Ni-CeO2 and Ni-Ce0.8Zr0.2O2 catalysts exhibited relatively high activity as well as stability, while the impregnated Ni/CeO2 and Ni/Ce0.8Zr0.2O2 catalysts slowly deactivated with time on stream at 800 °C. At the temperature range from 700 to 750 °C, co-precipitated Ni-Ce0.8Zr0.2O2 catalyst showed higher CH4 and CO2 conversion than Ni-CeO2 catalyst. The enhanced catalytic activity and stability of the co-precipitated Ni-Ce0.8Zr0.2O2 catalyst is due to the combination of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and finely dispersed nano-sized NiO crystallites resulting in intimate contact between Ni and support, better Ni dispersion, and enhanced oxygen transfer during the reaction.

AB - Ni-CeO2, Ni-ZrO2 and Ni-Ce0.8Zr0.2O2 catalysts have been prepared by a co-precipitation method to develop catalysts suitable for synthesis gas production for gas to liquid (GTL) process. A conventional impregnation method was also employed to prepare Ni/CeO2, Ni/ZrO2 and Ni/Ce0.8Zr0.2O2 catalysts to compare the impregnated catalysts with the co-precipitated ones. Ni content was fixed at 15% for both cases. It has been confirmed that the co-precipitated Ni-CeO2 and Ni-Ce0.8Zr0.2O2 catalysts exhibited relatively high activity as well as stability, while the impregnated Ni/CeO2 and Ni/Ce0.8Zr0.2O2 catalysts slowly deactivated with time on stream at 800 °C. At the temperature range from 700 to 750 °C, co-precipitated Ni-Ce0.8Zr0.2O2 catalyst showed higher CH4 and CO2 conversion than Ni-CeO2 catalyst. The enhanced catalytic activity and stability of the co-precipitated Ni-Ce0.8Zr0.2O2 catalyst is due to the combination of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and finely dispersed nano-sized NiO crystallites resulting in intimate contact between Ni and support, better Ni dispersion, and enhanced oxygen transfer during the reaction.

UR - http://www.scopus.com/inward/record.url?scp=68049104980&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=68049104980&partnerID=8YFLogxK

U2 - 10.1016/j.cattod.2009.01.001

DO - 10.1016/j.cattod.2009.01.001

M3 - Article

AN - SCOPUS:68049104980

VL - 146

SP - 71

EP - 75

JO - Catalysis Today

JF - Catalysis Today

SN - 0920-5861

IS - 1-2

ER -