Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data

Kyungjune Baek, Hyunjung Shim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Transfer learning for GANs successfully improves generation performance under low-shot regimes. However, existing studies show that the pretrained model using a single benchmark dataset is not generalized to various target datasets. More importantly, the pretrained model can be vulnerable to copyright or privacy risks as membership inference attack advances. To resolve both issues, we propose an effective and unbiased data synthesizer, namely Primitives - PS, inspired by the generic characteristics of natural images. Specifically, we utilize 1) the generic statistics on the frequency magnitude spectrum, 2) the elementary shape (i.e., image composition via elementary shapes) for representing the structure information, and 3) the existence of saliency as prior. Since our synthesizer only considers the generic properties of natural images, the single model pretrained on our dataset can be consistently transferred to various target datasets, and even outperforms the previous methods pretrained with the natural images in terms of Fréchet inception distance. Extensive analysis, ablation study, and evaluations demonstrate that each component of our data synthesizer is effective, and provide insights on the desirable nature of the pretrained model for the transferability of GANs.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages7844-7854
Number of pages11
ISBN (Electronic)9781665469463
DOIs
Publication statusPublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 2022 Jun 192022 Jun 24

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period22/6/1922/6/24

Bibliographical note

Funding Information:
Acknowledgements. We thank Jongwuk Lee and CVML members for the valuable feedback. This research was supported by the NRF Korea funded by the MSIT (2022R1A2C3011154, 2020R1A4A1016619), the IITP grant funded by the MSIT (2020-0-01361, YONSEI UNIVERSITY), and the Korea Medical Device Development Fund grant (202011D06).

Publisher Copyright:
© 2022 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data'. Together they form a unique fingerprint.

Cite this