Abstract
A comparative study on various solid oxide fuel cell (SOFC)-combined heat and power system layout designs is conducted to suggest its optimized structure. Thermodynamic models of a SOFC stack and balance of plant components are developed by using empirical correlations dependent on their design variables. 14 potential system layout designs are categorized by thermal integration methods through rigorous literature review and evaluated for their thermodynamic feasibility and performance by T-Q diagram analysis. Results show that preemptive air heating prior to combustion of stack exhaust gases or fuel heating is not thermodynamically feasible due to substantial heat transfer during air heating. Independent heat recuperation of the anode exhaust gas from a SOFC stack also shows thermodynamic non-viability given its low heat capacity rate. 4 effective layouts are selected and further investigated by proceeding detailed thermodynamic analysis. The system layout employing direct combustion just after the SOFC stack and branching of the hot gas stream (combustion gas) results in the pressure drop of 23.5 kPa and parasitic power of 1.04 kW (less than 5% of gross power). These are 2–4 times smaller than those of other layouts. Accordingly, the proposed layout provides the highest electrical efficiency of 55.5% and exergetic efficiency of 53.5%.
Original language | English |
---|---|
Pages (from-to) | 351-368 |
Number of pages | 18 |
Journal | Energy Conversion and Management |
Volume | 182 |
DOIs | |
Publication status | Published - 2019 Feb 15 |
Bibliographical note
Funding Information:This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20183010032370 ), the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning ( 2017M1A2A2044989 ), and in part by the Yonsei University Future-leading Research Initiative of 2018-22-0030.
Publisher Copyright:
© 2018 Elsevier Ltd
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Nuclear Energy and Engineering
- Fuel Technology
- Energy Engineering and Power Technology