TY - GEN
T1 - Comparison of Flat Field Correction Methods for Photon-Counting Spectral CT Images
AU - Kim, Donghyeok
AU - Baek, Jongduk
PY - 2018/11
Y1 - 2018/11
N2 - For the practical usage of the photon-counting detector (PCD) in medical imaging, conductor material stability, photon counting efficiency, and energy separation accuracy must reach a certain level. Besides the pulse pile-up phenomenon, PCD has a non-linear response of the incident X-ray energies, and thus without proper energy calibration, the reconstructed images produce significant ring artifacts. In this study, we propose a water gain correction method for energy calibration of the PCD. To calculate the gain of each detector pixel, we measured the ratio of the sinogram between a water cylinder phantom and an ideal water cylinder phantom, and then averaged the ratio over all views. Then, this gain was multiplied to the projection data acquired from the traditional flat field correction method. The performance of the proposed method was compared to flat field correction methods that use averaged air shots and scan data of a water cylinder phantom. Our results show that the proposed method reduces the ring artifacts effectively without increasing the noise in the final image. It is also observed that the proposed method provides improved SNR and CNR by 45 to 55% compared to the flat field correction using scan data of a water cylinder phantom.
AB - For the practical usage of the photon-counting detector (PCD) in medical imaging, conductor material stability, photon counting efficiency, and energy separation accuracy must reach a certain level. Besides the pulse pile-up phenomenon, PCD has a non-linear response of the incident X-ray energies, and thus without proper energy calibration, the reconstructed images produce significant ring artifacts. In this study, we propose a water gain correction method for energy calibration of the PCD. To calculate the gain of each detector pixel, we measured the ratio of the sinogram between a water cylinder phantom and an ideal water cylinder phantom, and then averaged the ratio over all views. Then, this gain was multiplied to the projection data acquired from the traditional flat field correction method. The performance of the proposed method was compared to flat field correction methods that use averaged air shots and scan data of a water cylinder phantom. Our results show that the proposed method reduces the ring artifacts effectively without increasing the noise in the final image. It is also observed that the proposed method provides improved SNR and CNR by 45 to 55% compared to the flat field correction using scan data of a water cylinder phantom.
UR - http://www.scopus.com/inward/record.url?scp=85068386089&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068386089&partnerID=8YFLogxK
U2 - 10.1109/NSSMIC.2018.8824713
DO - 10.1109/NSSMIC.2018.8824713
M3 - Conference contribution
T3 - 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 - Proceedings
BT - 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018
Y2 - 10 November 2018 through 17 November 2018
ER -