Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines

jong shik shin, Byung Gee Kim

Research output: Contribution to journalArticle

83 Citations (Scopus)

Abstract

Microorganisms that are capable of (S)-enantioselective transamination of chiral amines were isolated from soil samples by selective enrichment using (S)-α-methylbenzylamine ((S)-α-MBA) as a sole nitrogen source. Among them, Klebsiella pneumoniae JS2F, Bacillus thuringiensis JS64, and Vibrio fluvialis JS17 showed good ω-transaminase (ω-TA) activities and the properties of the ω-TAs were investigated. The induction level of the enzyme was strongly dependent on the nitrogen source for the strains, except for V. fluvialis JS17. All the ω-TAs showed high enantioselectivity (E>50) toward (S)-α-MBA and broad amino donor specificities for arylic and aliphatic chiral amines. Besides pyruvate, aldehydes such as propionaldehyde and butyraldehyde showed good amino acceptor reactivities. All the ω-TAs showed substrate inhibition by (S)-α-MBA above 200 mM. Moreover, substrate inhibition by pyruvate above 10 mM was observed for ω-TA from V. fluvialis JS17. In the case of product inhibition, acetophenone showed much greater inhibitions than L-alanine for all ω-TAs. Comparison of the enzyme properties indicates that ω-transaminase from V. fluvialis JS17 is the best one for both kinetic resolution and asymmetric synthesis to produce enantiomerically pure chiral amines. Kinetic resolution of sec-butylamine (20 mM) was done under reduced pressure (150 Torr) to selectively remove an inhibitory product (2-butanone) using the enzyme from V. fluvialis JS17. Enantiomeric excess of (R)-sec-butylamine reached 94.7% after 12 h of reaction.

Original languageEnglish
Pages (from-to)1782-1788
Number of pages7
JournalBioscience, Biotechnology and Biochemistry
Volume65
Issue number8
DOIs
Publication statusPublished - 2001 Aug 1

Fingerprint

Transaminases
Butylamines
Microorganisms
Amines
Pyruvic Acid
Nitrogen
Enzymes
Bacillus thuringiensis
Enzyme Induction
Kinetics
Vibrio
Enantioselectivity
Klebsiella pneumoniae
Bacilli
Substrates
Aldehydes
Alanine
Soil
Soils
Pressure

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Analytical Chemistry
  • Biochemistry
  • Applied Microbiology and Biotechnology
  • Molecular Biology
  • Organic Chemistry

Cite this

@article{db0b2d612fea41c2a23b3233d1205057,
title = "Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines",
abstract = "Microorganisms that are capable of (S)-enantioselective transamination of chiral amines were isolated from soil samples by selective enrichment using (S)-α-methylbenzylamine ((S)-α-MBA) as a sole nitrogen source. Among them, Klebsiella pneumoniae JS2F, Bacillus thuringiensis JS64, and Vibrio fluvialis JS17 showed good ω-transaminase (ω-TA) activities and the properties of the ω-TAs were investigated. The induction level of the enzyme was strongly dependent on the nitrogen source for the strains, except for V. fluvialis JS17. All the ω-TAs showed high enantioselectivity (E>50) toward (S)-α-MBA and broad amino donor specificities for arylic and aliphatic chiral amines. Besides pyruvate, aldehydes such as propionaldehyde and butyraldehyde showed good amino acceptor reactivities. All the ω-TAs showed substrate inhibition by (S)-α-MBA above 200 mM. Moreover, substrate inhibition by pyruvate above 10 mM was observed for ω-TA from V. fluvialis JS17. In the case of product inhibition, acetophenone showed much greater inhibitions than L-alanine for all ω-TAs. Comparison of the enzyme properties indicates that ω-transaminase from V. fluvialis JS17 is the best one for both kinetic resolution and asymmetric synthesis to produce enantiomerically pure chiral amines. Kinetic resolution of sec-butylamine (20 mM) was done under reduced pressure (150 Torr) to selectively remove an inhibitory product (2-butanone) using the enzyme from V. fluvialis JS17. Enantiomeric excess of (R)-sec-butylamine reached 94.7{\%} after 12 h of reaction.",
author = "shin, {jong shik} and Kim, {Byung Gee}",
year = "2001",
month = "8",
day = "1",
doi = "10.1271/bbb.65.1782",
language = "English",
volume = "65",
pages = "1782--1788",
journal = "Bioscience, Biotechnology and Biochemistry",
issn = "0916-8451",
publisher = "Japan Society for Bioscience Biotechnology and Agrochemistry",
number = "8",

}

Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines. / shin, jong shik; Kim, Byung Gee.

In: Bioscience, Biotechnology and Biochemistry, Vol. 65, No. 8, 01.08.2001, p. 1782-1788.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines

AU - shin, jong shik

AU - Kim, Byung Gee

PY - 2001/8/1

Y1 - 2001/8/1

N2 - Microorganisms that are capable of (S)-enantioselective transamination of chiral amines were isolated from soil samples by selective enrichment using (S)-α-methylbenzylamine ((S)-α-MBA) as a sole nitrogen source. Among them, Klebsiella pneumoniae JS2F, Bacillus thuringiensis JS64, and Vibrio fluvialis JS17 showed good ω-transaminase (ω-TA) activities and the properties of the ω-TAs were investigated. The induction level of the enzyme was strongly dependent on the nitrogen source for the strains, except for V. fluvialis JS17. All the ω-TAs showed high enantioselectivity (E>50) toward (S)-α-MBA and broad amino donor specificities for arylic and aliphatic chiral amines. Besides pyruvate, aldehydes such as propionaldehyde and butyraldehyde showed good amino acceptor reactivities. All the ω-TAs showed substrate inhibition by (S)-α-MBA above 200 mM. Moreover, substrate inhibition by pyruvate above 10 mM was observed for ω-TA from V. fluvialis JS17. In the case of product inhibition, acetophenone showed much greater inhibitions than L-alanine for all ω-TAs. Comparison of the enzyme properties indicates that ω-transaminase from V. fluvialis JS17 is the best one for both kinetic resolution and asymmetric synthesis to produce enantiomerically pure chiral amines. Kinetic resolution of sec-butylamine (20 mM) was done under reduced pressure (150 Torr) to selectively remove an inhibitory product (2-butanone) using the enzyme from V. fluvialis JS17. Enantiomeric excess of (R)-sec-butylamine reached 94.7% after 12 h of reaction.

AB - Microorganisms that are capable of (S)-enantioselective transamination of chiral amines were isolated from soil samples by selective enrichment using (S)-α-methylbenzylamine ((S)-α-MBA) as a sole nitrogen source. Among them, Klebsiella pneumoniae JS2F, Bacillus thuringiensis JS64, and Vibrio fluvialis JS17 showed good ω-transaminase (ω-TA) activities and the properties of the ω-TAs were investigated. The induction level of the enzyme was strongly dependent on the nitrogen source for the strains, except for V. fluvialis JS17. All the ω-TAs showed high enantioselectivity (E>50) toward (S)-α-MBA and broad amino donor specificities for arylic and aliphatic chiral amines. Besides pyruvate, aldehydes such as propionaldehyde and butyraldehyde showed good amino acceptor reactivities. All the ω-TAs showed substrate inhibition by (S)-α-MBA above 200 mM. Moreover, substrate inhibition by pyruvate above 10 mM was observed for ω-TA from V. fluvialis JS17. In the case of product inhibition, acetophenone showed much greater inhibitions than L-alanine for all ω-TAs. Comparison of the enzyme properties indicates that ω-transaminase from V. fluvialis JS17 is the best one for both kinetic resolution and asymmetric synthesis to produce enantiomerically pure chiral amines. Kinetic resolution of sec-butylamine (20 mM) was done under reduced pressure (150 Torr) to selectively remove an inhibitory product (2-butanone) using the enzyme from V. fluvialis JS17. Enantiomeric excess of (R)-sec-butylamine reached 94.7% after 12 h of reaction.

UR - http://www.scopus.com/inward/record.url?scp=0035433593&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035433593&partnerID=8YFLogxK

U2 - 10.1271/bbb.65.1782

DO - 10.1271/bbb.65.1782

M3 - Article

VL - 65

SP - 1782

EP - 1788

JO - Bioscience, Biotechnology and Biochemistry

JF - Bioscience, Biotechnology and Biochemistry

SN - 0916-8451

IS - 8

ER -