Comparison of the abilities of SD-OCT and SS-OCT in evaluating the thickness of the macular inner retinal layer for glaucoma diagnosis

Kyoung Min Lee, Eun Ji Lee, Tae Woo Kim, Hyunjoong Kim

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Purpose: To compare the abilities of spectral-domain optical coherence tomography (OCT) (SD-OCT; Spectralis, Heidelberg Engineering) and swept-source OCT (SS-OCT; DRI-OCT1 Atlantis system, Topcon) for analyzing the macular inner retinal layers in diagnosing glaucoma. Methods: The study included 60 patients with primary open-angle glaucoma (POAG) and 60 healthy control subjects. Macular cube area was scanned using SD-OCT and SS-OCT on the same day to assess the thicknesses of the macular retinal nerve fiber layer (mRNFL), ganglion cell layer plus inner plexiform layer (GCIPL), and total retinal layer in nine subfields defined by the Early Treatment Diabetic Retinopathy Study (ETDRS). The abilities of the parameters to discriminate between the POAG and control groups were assessed using areas under the receiver operating characteristic curves (AUCs). Results: Glaucoma-associated mRNFL and GCIPL thinning was more common in the outer zones than inner zones for both SD-OCT and SS-OCT. The mRNFL and GCIPL measurements showed distinct pattern differences between SD-OCT and SS-OCT in each ETDRS subfield. Although the glaucoma-diagnosis ability was comparable between SD-OCT and SSOCT for most of the parameters, AUC was significantly larger for SD-OCT measurements of the GCIPL thickness in the outer temporal zones (p = 0.003) and of the mRNFL thickness in the outer nasal zones (p = 0.001), with the former having the largest AUC for discriminating POAG from healthy eyes (AUC = 0.894). Conclusion: Spectralis SD-OCT and DRI SS-OCT have similar glaucoma-diagnosis abilities based on macular inner layer thickness analysis. However, Spectralis SD-OCT was potentially superior to DRI SS-OCT in detecting GCIPL thinning in the outer temporal zone, where the glaucomatous damage predominantly occurs.

Original languageEnglish
Article numbere0147964
JournalPLoS One
Volume11
Issue number1
DOIs
Publication statusPublished - 2016 Jan 1

Fingerprint

glaucoma
Optical tomography
tomography
Optical Coherence Tomography
Glaucoma
Ganglia
nerve fibers
Nerve Fibers
Area Under Curve
diabetic retinopathy
Fibers
Diabetic Retinopathy
cells
Cells
Nose

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

@article{0704665a32a34f76a89de775b4362e91,
title = "Comparison of the abilities of SD-OCT and SS-OCT in evaluating the thickness of the macular inner retinal layer for glaucoma diagnosis",
abstract = "Purpose: To compare the abilities of spectral-domain optical coherence tomography (OCT) (SD-OCT; Spectralis, Heidelberg Engineering) and swept-source OCT (SS-OCT; DRI-OCT1 Atlantis system, Topcon) for analyzing the macular inner retinal layers in diagnosing glaucoma. Methods: The study included 60 patients with primary open-angle glaucoma (POAG) and 60 healthy control subjects. Macular cube area was scanned using SD-OCT and SS-OCT on the same day to assess the thicknesses of the macular retinal nerve fiber layer (mRNFL), ganglion cell layer plus inner plexiform layer (GCIPL), and total retinal layer in nine subfields defined by the Early Treatment Diabetic Retinopathy Study (ETDRS). The abilities of the parameters to discriminate between the POAG and control groups were assessed using areas under the receiver operating characteristic curves (AUCs). Results: Glaucoma-associated mRNFL and GCIPL thinning was more common in the outer zones than inner zones for both SD-OCT and SS-OCT. The mRNFL and GCIPL measurements showed distinct pattern differences between SD-OCT and SS-OCT in each ETDRS subfield. Although the glaucoma-diagnosis ability was comparable between SD-OCT and SSOCT for most of the parameters, AUC was significantly larger for SD-OCT measurements of the GCIPL thickness in the outer temporal zones (p = 0.003) and of the mRNFL thickness in the outer nasal zones (p = 0.001), with the former having the largest AUC for discriminating POAG from healthy eyes (AUC = 0.894). Conclusion: Spectralis SD-OCT and DRI SS-OCT have similar glaucoma-diagnosis abilities based on macular inner layer thickness analysis. However, Spectralis SD-OCT was potentially superior to DRI SS-OCT in detecting GCIPL thinning in the outer temporal zone, where the glaucomatous damage predominantly occurs.",
author = "Lee, {Kyoung Min} and Lee, {Eun Ji} and Kim, {Tae Woo} and Hyunjoong Kim",
year = "2016",
month = "1",
day = "1",
doi = "10.1371/journal.pone.0147964",
language = "English",
volume = "11",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "1",

}

Comparison of the abilities of SD-OCT and SS-OCT in evaluating the thickness of the macular inner retinal layer for glaucoma diagnosis. / Lee, Kyoung Min; Lee, Eun Ji; Kim, Tae Woo; Kim, Hyunjoong.

In: PLoS One, Vol. 11, No. 1, e0147964, 01.01.2016.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Comparison of the abilities of SD-OCT and SS-OCT in evaluating the thickness of the macular inner retinal layer for glaucoma diagnosis

AU - Lee, Kyoung Min

AU - Lee, Eun Ji

AU - Kim, Tae Woo

AU - Kim, Hyunjoong

PY - 2016/1/1

Y1 - 2016/1/1

N2 - Purpose: To compare the abilities of spectral-domain optical coherence tomography (OCT) (SD-OCT; Spectralis, Heidelberg Engineering) and swept-source OCT (SS-OCT; DRI-OCT1 Atlantis system, Topcon) for analyzing the macular inner retinal layers in diagnosing glaucoma. Methods: The study included 60 patients with primary open-angle glaucoma (POAG) and 60 healthy control subjects. Macular cube area was scanned using SD-OCT and SS-OCT on the same day to assess the thicknesses of the macular retinal nerve fiber layer (mRNFL), ganglion cell layer plus inner plexiform layer (GCIPL), and total retinal layer in nine subfields defined by the Early Treatment Diabetic Retinopathy Study (ETDRS). The abilities of the parameters to discriminate between the POAG and control groups were assessed using areas under the receiver operating characteristic curves (AUCs). Results: Glaucoma-associated mRNFL and GCIPL thinning was more common in the outer zones than inner zones for both SD-OCT and SS-OCT. The mRNFL and GCIPL measurements showed distinct pattern differences between SD-OCT and SS-OCT in each ETDRS subfield. Although the glaucoma-diagnosis ability was comparable between SD-OCT and SSOCT for most of the parameters, AUC was significantly larger for SD-OCT measurements of the GCIPL thickness in the outer temporal zones (p = 0.003) and of the mRNFL thickness in the outer nasal zones (p = 0.001), with the former having the largest AUC for discriminating POAG from healthy eyes (AUC = 0.894). Conclusion: Spectralis SD-OCT and DRI SS-OCT have similar glaucoma-diagnosis abilities based on macular inner layer thickness analysis. However, Spectralis SD-OCT was potentially superior to DRI SS-OCT in detecting GCIPL thinning in the outer temporal zone, where the glaucomatous damage predominantly occurs.

AB - Purpose: To compare the abilities of spectral-domain optical coherence tomography (OCT) (SD-OCT; Spectralis, Heidelberg Engineering) and swept-source OCT (SS-OCT; DRI-OCT1 Atlantis system, Topcon) for analyzing the macular inner retinal layers in diagnosing glaucoma. Methods: The study included 60 patients with primary open-angle glaucoma (POAG) and 60 healthy control subjects. Macular cube area was scanned using SD-OCT and SS-OCT on the same day to assess the thicknesses of the macular retinal nerve fiber layer (mRNFL), ganglion cell layer plus inner plexiform layer (GCIPL), and total retinal layer in nine subfields defined by the Early Treatment Diabetic Retinopathy Study (ETDRS). The abilities of the parameters to discriminate between the POAG and control groups were assessed using areas under the receiver operating characteristic curves (AUCs). Results: Glaucoma-associated mRNFL and GCIPL thinning was more common in the outer zones than inner zones for both SD-OCT and SS-OCT. The mRNFL and GCIPL measurements showed distinct pattern differences between SD-OCT and SS-OCT in each ETDRS subfield. Although the glaucoma-diagnosis ability was comparable between SD-OCT and SSOCT for most of the parameters, AUC was significantly larger for SD-OCT measurements of the GCIPL thickness in the outer temporal zones (p = 0.003) and of the mRNFL thickness in the outer nasal zones (p = 0.001), with the former having the largest AUC for discriminating POAG from healthy eyes (AUC = 0.894). Conclusion: Spectralis SD-OCT and DRI SS-OCT have similar glaucoma-diagnosis abilities based on macular inner layer thickness analysis. However, Spectralis SD-OCT was potentially superior to DRI SS-OCT in detecting GCIPL thinning in the outer temporal zone, where the glaucomatous damage predominantly occurs.

UR - http://www.scopus.com/inward/record.url?scp=84958576900&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84958576900&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0147964

DO - 10.1371/journal.pone.0147964

M3 - Article

VL - 11

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 1

M1 - e0147964

ER -