Comparison of two different equations of state for application of carbon dioxide sequestration

Weon Shik Han, Brian McPherson

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

We suggest that different equations of state (EOS) algorithms can and frequently will provide very different predictions of CO2 migration following injection for sequestration. Rather than carry out an exhaustive examination of all EOS algorithms available, we elected to evaluate this general hypothesis by making detailed comparisons of simulation results of two very common EOS algorithms. We simulated and compared CO2 migration patterns using two fundamentally different EOS algorithms - Modified Redlich-Kwong EOS (MRKEOS) and Span and Wagner EOS (SWEOS). In general, the predictions of thermophysical properties for both algorithms are close, except for a contrast in the predicted fugacity coefficient of CO2, which subsequently propagates to a contrast in predicted solubility in water/brine. Typically, MRKEOS underestimates solubility of CO2 compared to both SWEOS and experimental solubility data. In simulations of CO2 migration, dissolution rates of separate-phase CO2 predicted from the two EOS algorithms were significantly different, even for small contrasts in predicted fluid properties from EOS algorithms, resulting in markedly different migration patterns. We also examined the potential disparities of simulating integrity of caprock using these two common EOS algorithms. To simplify the analysis and to isolate the roles of specific properties, we limited these simulations to one dimension. Simulation results from both EOS algorithms indicate that the distance that separate-phase CO2 migrates through an unfractured caprock varies linearly with the amount of injected CO2, logarithmically with permeability, and inversely with porosity. More general sensitivity analyses were conducted to investigate the roles of individual parameters with respect to various properties, including how brine density, viscosity, and CO2 solubility in brine, affect CO2 flow and transport. General results suggest that both brine density and CO2 solubility are critical factors. The combined results of this study suggest that choice of EOS algorithm is critical, because even small differences in predicted density and solubility can lead to dramatic differences in migration patterns and timing of different processes such as gravity segregation and caprock penetration. We only evaluated two EOS algorithms, but the resulting disparities were great enough that we conclude that other EOS algorithms will also produce variable results in predicted migration and related processes.

Original languageEnglish
Pages (from-to)877-890
Number of pages14
JournalAdvances in Water Resources
Volume31
Issue number6
DOIs
Publication statusPublished - 2008 Jun 1

Fingerprint

equation of state
carbon sequestration
solubility
brine
EOS
comparison
simulation
fugacity
prediction
penetration
viscosity
porosity
dissolution
permeability
gravity

All Science Journal Classification (ASJC) codes

  • Water Science and Technology

Cite this

@article{2fff208dff9f468aa13cab531069558f,
title = "Comparison of two different equations of state for application of carbon dioxide sequestration",
abstract = "We suggest that different equations of state (EOS) algorithms can and frequently will provide very different predictions of CO2 migration following injection for sequestration. Rather than carry out an exhaustive examination of all EOS algorithms available, we elected to evaluate this general hypothesis by making detailed comparisons of simulation results of two very common EOS algorithms. We simulated and compared CO2 migration patterns using two fundamentally different EOS algorithms - Modified Redlich-Kwong EOS (MRKEOS) and Span and Wagner EOS (SWEOS). In general, the predictions of thermophysical properties for both algorithms are close, except for a contrast in the predicted fugacity coefficient of CO2, which subsequently propagates to a contrast in predicted solubility in water/brine. Typically, MRKEOS underestimates solubility of CO2 compared to both SWEOS and experimental solubility data. In simulations of CO2 migration, dissolution rates of separate-phase CO2 predicted from the two EOS algorithms were significantly different, even for small contrasts in predicted fluid properties from EOS algorithms, resulting in markedly different migration patterns. We also examined the potential disparities of simulating integrity of caprock using these two common EOS algorithms. To simplify the analysis and to isolate the roles of specific properties, we limited these simulations to one dimension. Simulation results from both EOS algorithms indicate that the distance that separate-phase CO2 migrates through an unfractured caprock varies linearly with the amount of injected CO2, logarithmically with permeability, and inversely with porosity. More general sensitivity analyses were conducted to investigate the roles of individual parameters with respect to various properties, including how brine density, viscosity, and CO2 solubility in brine, affect CO2 flow and transport. General results suggest that both brine density and CO2 solubility are critical factors. The combined results of this study suggest that choice of EOS algorithm is critical, because even small differences in predicted density and solubility can lead to dramatic differences in migration patterns and timing of different processes such as gravity segregation and caprock penetration. We only evaluated two EOS algorithms, but the resulting disparities were great enough that we conclude that other EOS algorithms will also produce variable results in predicted migration and related processes.",
author = "Han, {Weon Shik} and Brian McPherson",
year = "2008",
month = "6",
day = "1",
doi = "10.1016/j.advwatres.2008.01.011",
language = "English",
volume = "31",
pages = "877--890",
journal = "Advances in Water Resources",
issn = "0309-1708",
publisher = "Elsevier Limited",
number = "6",

}

Comparison of two different equations of state for application of carbon dioxide sequestration. / Han, Weon Shik; McPherson, Brian.

In: Advances in Water Resources, Vol. 31, No. 6, 01.06.2008, p. 877-890.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Comparison of two different equations of state for application of carbon dioxide sequestration

AU - Han, Weon Shik

AU - McPherson, Brian

PY - 2008/6/1

Y1 - 2008/6/1

N2 - We suggest that different equations of state (EOS) algorithms can and frequently will provide very different predictions of CO2 migration following injection for sequestration. Rather than carry out an exhaustive examination of all EOS algorithms available, we elected to evaluate this general hypothesis by making detailed comparisons of simulation results of two very common EOS algorithms. We simulated and compared CO2 migration patterns using two fundamentally different EOS algorithms - Modified Redlich-Kwong EOS (MRKEOS) and Span and Wagner EOS (SWEOS). In general, the predictions of thermophysical properties for both algorithms are close, except for a contrast in the predicted fugacity coefficient of CO2, which subsequently propagates to a contrast in predicted solubility in water/brine. Typically, MRKEOS underestimates solubility of CO2 compared to both SWEOS and experimental solubility data. In simulations of CO2 migration, dissolution rates of separate-phase CO2 predicted from the two EOS algorithms were significantly different, even for small contrasts in predicted fluid properties from EOS algorithms, resulting in markedly different migration patterns. We also examined the potential disparities of simulating integrity of caprock using these two common EOS algorithms. To simplify the analysis and to isolate the roles of specific properties, we limited these simulations to one dimension. Simulation results from both EOS algorithms indicate that the distance that separate-phase CO2 migrates through an unfractured caprock varies linearly with the amount of injected CO2, logarithmically with permeability, and inversely with porosity. More general sensitivity analyses were conducted to investigate the roles of individual parameters with respect to various properties, including how brine density, viscosity, and CO2 solubility in brine, affect CO2 flow and transport. General results suggest that both brine density and CO2 solubility are critical factors. The combined results of this study suggest that choice of EOS algorithm is critical, because even small differences in predicted density and solubility can lead to dramatic differences in migration patterns and timing of different processes such as gravity segregation and caprock penetration. We only evaluated two EOS algorithms, but the resulting disparities were great enough that we conclude that other EOS algorithms will also produce variable results in predicted migration and related processes.

AB - We suggest that different equations of state (EOS) algorithms can and frequently will provide very different predictions of CO2 migration following injection for sequestration. Rather than carry out an exhaustive examination of all EOS algorithms available, we elected to evaluate this general hypothesis by making detailed comparisons of simulation results of two very common EOS algorithms. We simulated and compared CO2 migration patterns using two fundamentally different EOS algorithms - Modified Redlich-Kwong EOS (MRKEOS) and Span and Wagner EOS (SWEOS). In general, the predictions of thermophysical properties for both algorithms are close, except for a contrast in the predicted fugacity coefficient of CO2, which subsequently propagates to a contrast in predicted solubility in water/brine. Typically, MRKEOS underestimates solubility of CO2 compared to both SWEOS and experimental solubility data. In simulations of CO2 migration, dissolution rates of separate-phase CO2 predicted from the two EOS algorithms were significantly different, even for small contrasts in predicted fluid properties from EOS algorithms, resulting in markedly different migration patterns. We also examined the potential disparities of simulating integrity of caprock using these two common EOS algorithms. To simplify the analysis and to isolate the roles of specific properties, we limited these simulations to one dimension. Simulation results from both EOS algorithms indicate that the distance that separate-phase CO2 migrates through an unfractured caprock varies linearly with the amount of injected CO2, logarithmically with permeability, and inversely with porosity. More general sensitivity analyses were conducted to investigate the roles of individual parameters with respect to various properties, including how brine density, viscosity, and CO2 solubility in brine, affect CO2 flow and transport. General results suggest that both brine density and CO2 solubility are critical factors. The combined results of this study suggest that choice of EOS algorithm is critical, because even small differences in predicted density and solubility can lead to dramatic differences in migration patterns and timing of different processes such as gravity segregation and caprock penetration. We only evaluated two EOS algorithms, but the resulting disparities were great enough that we conclude that other EOS algorithms will also produce variable results in predicted migration and related processes.

UR - http://www.scopus.com/inward/record.url?scp=43649107511&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=43649107511&partnerID=8YFLogxK

U2 - 10.1016/j.advwatres.2008.01.011

DO - 10.1016/j.advwatres.2008.01.011

M3 - Article

AN - SCOPUS:43649107511

VL - 31

SP - 877

EP - 890

JO - Advances in Water Resources

JF - Advances in Water Resources

SN - 0309-1708

IS - 6

ER -