Complexity Reduction by Modified Scale-Space Construction in SIFT Generation Optimized for a Mobile GPU

Chulhee Lee, Chae Eun Rhee, Hyuk Jae Lee

Research output: Contribution to journalArticle

7 Citations (Scopus)


Scale-invariant feature transform (SIFT) is one of the most widely used local features for computer vision in mobile devices. A mobile graphic processing unit (GPU) is often used to run computer-vision applications using SIFT features, but the performance in such a case is not powerful enough to generate SIFT features in real time. This paper proposes an efficient scheme to optimize the SIFT algorithm for a mobile GPU. It analyzes the conventional scale-space construction step in the SIFT generation, finding that reducing the size of the Gaussian filter and the scale-space image leads to a significant speedup with only a slight degradation of the quality of the features. Based on this observation, the SIFT algorithm is modified and implemented for real-time execution. Additional optimization techniques are employed for a further speedup by efficiently utilizing both the CPU and the GPU in a mobile processor. The proposed SIFT generation scheme achieves a processing speed of 28.30 frames/s for an image with a resolution of 1280 × 720 running on a Galaxy S5 LTE-A device, thereby gaining a speedup by the factors of 114.78 and 4.53 over CPU- and GPU-only implementations, respectively.

Original languageEnglish
Article number7490389
Pages (from-to)2246-2259
Number of pages14
JournalIEEE Transactions on Circuits and Systems for Video Technology
Issue number10
Publication statusPublished - 2017 Oct

All Science Journal Classification (ASJC) codes

  • Media Technology
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Complexity Reduction by Modified Scale-Space Construction in SIFT Generation Optimized for a Mobile GPU'. Together they form a unique fingerprint.

  • Cite this